Modern
Django Web
Development

With Channels, DRF, GraphQlL,
and React

Malhar Lathkar

ApPress

Modern Django Web
Development

Malhar Lathkar

Apress’

Modern Django Web Development: With Channels, DRF, GraphQL,
and React

Malhar Lathkar
Nanded, Maharashtra, India

ISBN-13 (pbk): 979-8-8688-1471-6 ISBN-13 (electronic): 979-8-8688-1472-3
https://doi.org/10.1007/979-8-8688-1472-3

Copyright © 2025 by Malhar Lathkar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior, Divya Modi
Development Editor: James Markham

Coordinating Editor: Jacob Shmulewitz

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New
York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1472-3
https://orcid.org/0009-0005-7275-9053

It's been a great privilege to have learned from
many exceptional teachers, who taught from the heart
and not just the book.

I dedicate this work to all of them.

Table of Contents

About the AUthOrc.ccccmmmsmmmmsssnmmsssssmssnssssss s ssnnssssnnss xiii
About the Technical REVIEWETcuseesssssmsssssnsssssasssssssssssnnssssanssssanssss Xv
Acknowledgments.......cccuunssssssmmsnnsmmsssssssssssssnsssesssssssssssssnsssssssssnnnnnns Xvii
INtroduction........ccccmssemmmnsmnmsssnsmssssnsssssnsssssnsssssnsssssnnssssnnsnssnnnnssnnnnnnns Xix
Chapter 1: Django BasSiCSccccrrrusssmnnsmssssnnnssssssnssssssssnnnssssssnsnssssssnnssssss 1
INEFOAUCTION......cccece s 1
Fundamentals of HTTP ... 2
HTTP METNOUS ... 4
POST MEENOM........coeeirrirrrerirere s 4

GET MEhOMcueueuercrererninrssrins e 4

PUT MELhOUcvoveeiercirerere e se e 5
DELETE METNOMcooveererererereseseeese s sssssssss e s e e ens 5
0| SRR 6
L PPN 7
WSGIref PACKAGEcovreeerrescrre s 8
What IS @ Web FramewOrk? ..o sssssssssesens 11
MVC VS. MVT ... ssnsnenees 14
Asynchronous ProCeSSINg.......c.cuvvrrerennnnsesess s s ssssessesse s 16
ASYNCIO MOUIE ... 16

ASGI ...t e 19

TABLE OF CONTENTS

OVerview Of DJaNG0cccvrevererrerierenss s e s s s e saesesessessessssessessessessssenseses 21
Batteries INCIUdEd ... 21
14 AY o]0 LSS 21
ST =11 S 22
Documentation and SUPPOIL........ccceevvrreriernrenrersere s sesesaesaes 22

11T 111 T o O 22

Chapter 2: Django: First Steps....cccccccmmrmmmsmnnmmssssnsnsssssssnsssssssssssssssnnnnes 23

1L UL T T o S 24
Installation on UDUNTU.......c..oeereeeeee s 24
Installation on WindOWS..........ccoeocerenmrenernrerrerer e 28

Set Up the Django ProjeCtcoecvveererenerssessssessse s ses e sessenenns 29

D LA oY o] OSSR SO 33
A AN ADD .o 35
DEfiNg VIBWS ..o s 35
Defing Urlpatterns........ccvveriesnese e s 36
Update URLCONFcouiiriririririresesese s ss e se s ens 37
Path Parameters.........cccuovenrnnnerinnsense s 38
Serving Webh Pages........oucvverernnmrnisenesessse s ssssessssssesessessssssessanes 40

AAMIN SITB.....ccciriccer e 43

1] 4= 7 49

Chapter 3: Django ORM..........ccccvusssmmnnmmssssnnnmsssssssssssssssssesssssnnssssssnnnnss 51

DB-APLL......ooieieereresesee s e p e 52

What IS ORM?......cceeccceesss s snsnsnns 57

Defing @ MOUEL........cccreeerreerreser s 60

Database Configuration............ccoveeernrennennnesnsse e 61

RUN MIgrationS.....ccccvevereriere e sirserse s sesses s ses s sssses e s ssssessessessessssessesnees 62

Register Model with AdmMin Site.......cccvvvvrrierinnerrrerie s sresessessesaens 64

TABLE OF CONTENTS

Django Admin SHEll........ccucvieriirririere e ssessesessessesaees 65
T [0 0] (=T S 66
REtriEVal ..o 67
SBAICH ... —————————— 69
Updating the ODJECEScoivverierererirrerrere s s ses e s s s 70

Model Field TYPES ...coeveircre i snen 72
ChArFIEI ... 73
INtegerField ..o —————————— 73
a0 U 1= o TR 74
BOOICANFIEI ... s 74
(D2][TS 74

Types of Relationships ... 75
One-to-0ne Relationship ... 77
One-to-Many RelationShip...........ccoverrenerescrnrenerese s 79
Many-to-Many RelationShipccoeerreenrenerenerresesese e 80

SUMMANY....eieererese s s se e s se s e e nre e s 82

Chapter 4: Django Templates.......c.cccemmnsnmnmmmsssssnnmmsssssnmssssssssmsssssnnns 85

Template ODJECL........cccveeerererre e 86

render() FUNCHION ..o se e sne 90

Template CONTEXEcccvvrere e s ene e 90

TEeMPIALE TAGS ..covevrerrirere e e e 92
{% If %0} TAQ weuvurerrrrersrsrsrarsrnsssssssss s e e e e e s sans s e nene s 93
B (0] Y B -V OSSO 96

FOrm TemMPIALEScoovvrr s 100
HTIML FOIM .o e 100
FOPM ClaSS....cceecereeereecrerenese e se s e s sessenens 103
a0 L T4 1 o R 108

vii

TABLE OF CONTENTS

ClasS-Based VIBW ... s e sssssesnans 111
GENENIC VIBWSevececceres e se e e e e sesansans 114
TeMPIALEVIBW ... 114
Cre@tEVIBWcceceeeccrererreee s 116
UPAATEVIBW ...t s e 118
DEIBLEVIBW......ececereeer e 119
DELAIIVIBW.....ceeecereeer e 121
LISTVIBW ...t 122

6] L 1T 125
Image AS StatiC ASSEL.......cccecrrererererr e 129
CSS and JavaSCripl ..o 131
Template INNEHTANCEccovvrvrre - 134
{% INCIUAE %} TAG....ceeeerrererrnseresreserrese s s s srs s sss e sesssnenns 135

{% DIOCK %0} TAG...euererreerreeressesessesessesesessesessssessssesessssessssesssssssssssssssnsssssssenns 139

{% eXteNdS %} TAG.....ccorrererrrrererererrese s s e s e 140
SUMMANY....ceivierieerirese e r e r e p e e nr e 143
Chapter 5: Django: Using Databases.........cccovumsssmmnnnmsssnnnnssssssnsnsssssnns 145
SQLAIChEMY ORMoviiiririreseseee s snnns 146
40T RS 148
Table in SQLAICNEMY COTE.......cccvrerverererersersersessesessessessessssessessessesessessessens 149
MOGEL.......o i ———————————— 151
SESSION ...t s 153
1= 3 T 156
Advent of NOSQL Databasescouuerererereneesmsesesssssesmsesessssssssesesesssssssssesens 161
1110 1T 0] T 162

viii

TABLE OF CONTENTS

INSEANALION ... —————————— 162
Local DeploymMEeNt........ccccvvereririinne e s s s 162
ALIAS ...t ———————————— 163
MONGODB SHEIL......cceierererirrerrere s sresr s e nnesnens 164
0] 110 TR 166

PYMONQO ...ttt s s s s 171
INSEIT DOCUMENT ... s 172
REIHIBVAL ... 173

MONGOENGING ... 176
DOCUMENT CIASS......ccereecrerneerrenereese e ses e se e e esennenens 177
0] 1 T £ R 178
DynNamicDOCUMENT ..o 181

D] 0] 3o SR 183

SUMMANY ...ttt e e np e 186

Chapter 6: Advanced Djangoccuscemresssssnnnmsssssnsssssssssssssssssnsssssssnns 187

Messages FrameWOrK........ccoceceiriinnnnirsin e 187
COOKIESucuerererrrrsssrse e 188
SESSIONS ...vvvveecere s 189
Activating MeSSagiNgccccvverererrerierieresirsesese s ses s s ssssessesessesessessessens 190
StOrage BACKENMSccccvveververereninserese s s sseses e se e sss e s ssesassessessesnes 192
AddiNG MESSAGESceverreerererierersersersessessssesessessessssessessesssssssessessessssessessens 193
FEtChing MESSAQES.....ccccverrrrerierererirseres e se e sse s sae e ssessessssesaesnens 194

AUNENTICALION.......cccoeiceree e ————————— 197
Login and LOQOUL........ccucerveenimriiren s s s s s s s 198
A U] 202
@IOGIN_TEAUITEA() c.vrrerrerrererserserserersersersessssessessessessssessessessessssessessesssssssesseses 204

ix

TABLE OF CONTENTS

SECUIMLY FEATUIESveveerererirrerrererre s sse s sss e sessesrese s e ssesaesaeses e snesnessssennesnens 207
CSRF ...ttt 207
XSS et ———————————————— 209
SQL INJECLION ...t 211

ASYNC VIBWSeiereccie e sire e st se s e st e s s nnens 213
Adapter FUNCLIONS ..o s s se e snens 217
ASYNC QUETYSELS ... 218

REUSADIE APPS ..ot e s 218

Django Debug TOOIDATccoevererrnsmrereserresesessesessese e sesse s sessssessssessnnes 223

SUMMANY....ctivierrrerirese e r e r e e npn e 228

Chapter 7: REST APl with Django.......ccccuusseemmmsssssnnnssssssnssssssssnssssssnnns 229

WRAL IS API? ...t 230

REST ArChItECIUNE ...t s 233
UNiform INtErface.........covcricrrirr s 233
SHALBIESSNESS ... —————— 234
(01T 11T T 234
02 T 1 T 014 234
Layered SYSIBMccvvererrrerrerere s sere s e s s s sse e sss e s ssesassesesaesaes 235
Code 0N DEMANM ..o s 235

SErAliZALIONvveeccrere s 235

Django REST FrameWOrKccceeeererenerrenereneresesessesesesesessesessesesessesessssessenes 238
DRF — Get Started. ... 238
SeHAlIZEN ClaSS......cccvvrerereereererere s 244
MOAEISEHANIZEN........ccrveceereeree e 249
DRF — Class-Based VIBWS..........ccouecrererereenerrnserenesesesesesesessesessesesesesessenens 264
DRF — GENEIIC VIBWScvreeereeereeeresce e se s sennenens 267
VIBWSELS ... 271

TABLE OF CONTENTS

ROULEIS ...t s 273
DRF — Authentication..........c.ccoucrrnnnmne s 276
AlternativeS 0 DRF ... 288
DJaNg0 NiNJA......ceeeeeeeeeereree e e 289
SUMMANY....ceiieerireresese e se s e s s e s e s 298
Chapter 8: GraphQL with Django........ccccusssemmmmsssssnnsmsssssssssssssssssssssnnns 299
GraphQL VS. RESTcoiiceriesinesesse s ss e s ssssssessssesessssens 300
GraphQL ArChitBCIUNEcceeuereerirrere st re s sne e nnens 301
Schema Definition LangUAQEcvcevevevrerierevssensenessessssesessessssessessesssssssessessens 302
] 0TSSR 302
QUETIES weuvuereaeseseseeeees s ssss st ss s e e nsanas 304
MULALIONS......coiiircer 305
SUDSCHPHONS. ... s 306
SCRBMA.......cii s 307
GraphQL and PYLhoN ...ttt 308
B3] (U1 1< S 309
Strawberry-Django.........cocovrnrrrenesenerssesrsee s s 316
GrAPNENE......ceerretr et e ne s 322
Graphene-Djang0ccveererrrrerreriereneesessese s s ssessssessessessesessesaesaessssessessens 330
SUMMAIY.c.veitetrerere s sere e s s e s e e s e ssesae e s e s aesaese e e saesaesae e s e saesaesseennesaens 334
Chapter 9: WebSockets with Django.........ccccivunssmmnnrsssssnnsssssssnsssssssnns 335
WebS0cket ProtoCOol...........covvernerercnerireesese s 336
WebSocket and PYON ... 338
Django ChanNEISccveevrererenernsesese s ssenes 344
CONSUMETS ...cveuerresesrssesesseesssessssese e e sss e s s e e sa e s e s sse e sse e ses s ssesesse e senssnenns 348
310 o R 349

TABLE OF CONTENTS

CRANNEI LAYEIS ..ovveveerereraersssesessessessssessessesssssssessessessssessessesssssssessesasssssensessens 354
T (=T 1 P T T 356
GIOUPS c1veveersersersesesersessessesessessessessssessessesssssssessesssssssessessssssssnsessesssssssensenses 356

WehSocket Client Template........c.ccccoreerierrninre s ses e 358

LOGIN/LOGOULeeeeeeereecresee e e sns e 360

SUMMANY....ceiveeriresesese s e s e se e nensenenns 362

Chapter 10: ReactJS with Django.........ccuscemmmmsssmnnnmsssssnsnmsssssnssssssnnns 363

REACHIS.... ot 364

RBACT AP e ——————— 366

React Developer TOOIS........cuveriirrinnie s se s s s ssesne s as 370

What IS PrOMISEYcovoviececereresiseesese e sss s sesessans 370

USESTALE HOOK.........eeeeeeeeceeee e 372

USEEFECT HOOK......eieeerrecrereser et 373

AXIOS wevveuerrrerrresesrse s e e e R e n R 374
DRF BACKENMcoveveirereriesesses e se s s e s ssssensennens 381
AXI0S FrONTEN(.......covieeirreserisse e 385

APOIIO .. e 394
Graphene-Django Backen ... 398
APOIIO Frontend ..ot 400
BOOKLiSt COMPONENL.........ccvierierererirrerese s s ssessessssesaesnens 401

React for WEDSOCKEL.........ccvrmrimrererissssssse s ssssnsas 404

31111117 O 410

1T - 411

xii

About the Author

Malhar Lathkar brings over 35 years of
experience as an independent software
developer, entrepreneur, author, trainer,
and mentor. Though formally trained in
electronics at the postgraduate level, he has
successfully transitioned into the profession of
§ software training and development as a self-

| taught expert.
A passionate educator at heart, Malhar has
| positively impacted the careers of countless
students and professionals worldwide,

particularly in the technologies related to
Python and Java. He actively collaborates with various EdTech companies
as a subject matter expert, contributing to the design of high-quality
training programs.

He is a recognized author with works featured by prominent
publishing houses, including his 2023 FastAPI book with Apress. Malhar
also provides corporate training. He is frequently invited to conduct
workshops and deliver technical talks to students in various institutions.

Beyond his professional pursuits, Malhar enjoys Indian classical music
and is an avid sports enthusiast.

xiii

About the Technical Reviewer

Rajiv Tulsyan is an accomplished Solutions
Architect with a distinguished career spanning
over two decades, marked by a proven track
record in architecting distributed systems and
driving enterprise-level technology road maps

on a global scale. His expertise encompasses
a spectrum of skills, from designing and building accelerators to a deep
understanding of SOA, event-driven, and Microservices event-based
architectures. Rajiv’s mastery extends to cloud technologies, including
Hybrid Cloud Architecture and managed services, coupled with
proficiency in Java, Kubernetes, Docker, and API gateway technologies.
As a Solutions Architect, he is currently steering the design of architecture
strategies for large-scale application deployments, showcasing his
commitment to scalable, resilient, and innovative solutions. Rajiv’s career
journey reflects not only technical acumen but also leadership and a
passion for developing technical talent, positioning him as a luminary in
the ever-evolving landscape of technology.

With an academic background featuring an MS in Consulting
Management from BITS Pilani, India, and an MCA in Computer
Application from MDU Rohtak, Rajiv Tulsyan has seamlessly blended
theoretical knowledge with practical application throughout his career.
From leading a medium-sized Integration Architecture practice at
Software AG to heading the B2B Practice and Knowledge Management
Practice, Rajiv’'s management experience is as robust as his technical

expertise. His commitment to excellence is underscored by certifications

ABOUT THE TECHNICAL REVIEWER

such as WebMethods 9.0 Certified ESB Developer, WebMethods Certified
BPM Developer, and TOGAF 9.2: Enterprise Architecture, positioning him
as a thought leader in the field. Rajiv Tulsyan’s career stands as a testament
to his dedication to pushing the boundaries of technology and fostering an
atmosphere of technical excellence.

Acknowledgments

My previous work High-Performance Web Apps with FastAPI, published
by Apress (Springer Nature) in 2023, has been well received. I am deeply
grateful to them for their continued support. It is a privilege to partner with
a distinguished brand like Apress. I thank the editorial team for entrusting
me with another opportunity to share my knowledge through this book.

This book would not have been possible without the invaluable
contributions of many individuals. First and foremost, I extend my
heartfelt gratitude to James Robinson-Prior and Divya Modi - both highly
skilled editors - for their support, guidance, and feedback during the
various stages of the process of finalizing the draft of this book.

I'would also like to express my sincere appreciation to Rajiv Tulsyan
(the technical reviewer) for his expert insights and invaluable suggestions
to make the content as authentic as possible.

Murlimohan Kanagala has been a close friend for almost three
decades. Frequent constructive interactions with him have always been
immensely helpful in my journey as a developer, author, and educator. I
take this opportunity to acknowledge his support.

Treading an offbeat career path is never easy, unless you have a strong
support system of friends and family. I can't resist thanking my wife,
Jayashree, for being with me through the good and bad times.

Finally, sincere thanks from the bottom of my heart to my students,
colleagues, and collaborators.

xvii

Introduction

Django is by far the most preferred Python framework for developing
data-driven web applications. Over the period, it has evolved to become a
powerful full-stack framework, growing and expanding its capabilities for
building asynchronous solutions, APIs, and real-time applications.

This book aims to equip the reader with the core concepts of Django
and to highlight new facets and best practices of web application
development with Modern Django. It emphasizes features such as
Channels for the implementation of the WebSocket protocol, DRF for
building REST APIs, using Graphene and Strawberry for GraphQL APIs,
and developing a frontend app with React JS.

How This Book Is Arranged

This book comprises ten chapters. They are organized into two
distinct parts.

The first part deals with the basics of Django development, describing
the MVT architecture of Django with a lot of practical, real-world
examples.

Chapter 1 (Django Basics) sets the ball rolling by explaining the
concepts of web development. It introduces Python's asyncio module for
asynchronous processing and gives an overview of the Django framework.

Chapter 2 (Django: First Steps) guides you through the installation of
Django and creating your first Django application. It also gives a detailed
explanation of Django's Admin interface.

Xix

INTRODUCTION

Chapter 3 (Django ORM) deals with an important aspect of Django's
MVT architecture - models. You will learn how to use Django Shell, model
fields, and their types and the relationships.

Chapter 4 (Django Templates) covers the View component of
Django's architecture. You will learn about various template tags, different
types of views, and the static assets.

Chapter 5 (Django: Using Databases) is aimed at enabling you to
work with a wider range of databases. You will use SQLAlchemy ORM and
different libraries that let you use MongoDB as a backend to your Django
application.

In the second part, more advanced features of Django and various
apps in the Django ecosystem are discussed.

Chapter 6 (Advanced Django) will cover features such as messaging,
authentication, and security. It also discusses how to build and include
reusable apps such as the Django Debug Toolbar.

Chapter 7 (REST API with Django) helps you to explore the
powerful features of Django REST Framework to build robust REST APIs
with Django.

Chapter 8 (GraphQL with Django) explains the basics of GraphQL
protocol and discusses how to use Graphene and Strawberry packages for
building GraphQL API with Django.

Chapter 9 (WebSockets with Django) takes a detailed look at the
WebSocket protocol and its implementation in Django with the Django
Channels app.

Chapter 10 (React]S with Django) teaches you to use React]S
to build frontend clients for your Django-based REST, GraphQL, and
WebSocket APIs.

Thus, this book, Modern Django Web Development, will be a
comprehensive guide that covers all the aspects required for creating
successful and easy-to-use Django web applications.

CHAPTER 1

Django Basics

Introduction

Even after more than a decade and a half since the release of its earliest
version, Django is still the most popular web framework of Python
developers. The enduring relevance of Django can be attributed to
its continuing evolution by incorporating modern trends in the web
development technology. The latest version of Django (Django 5.0),
released in December 2023, also includes a number of new features that
enhance Django’s versatility, scalability, and maturity and provide a
cleaner architecture.

Before embarking upon our journey to learn to develop Modern
Django-based web applications, let us refresh some of the fundamental
concepts of web development. This chapter covers the following topics:

e Fundamentals of HTTP
e HTTP methods

¢ (CGI

e WSGI

o wsgiref package

© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_1

https://doi.org/10.1007/979-8-8688-1472-3_1#DOI

CHAPTER 1 DJANGO BASICS

e What is a web framework?
e MVCvs. MVT

e Asynchronous processing
e ASGI

e Overview of Django

Fundamentals of HTTP

Let us start with HTTP (Hypertext Transfer Protocol), since it is the
backbone of any data exchange over the World Wide Web. It is an
application layer protocol built on top of a TCP connection. The HTTP
follows a client-server communication model, wherein an HTTP client
(generally a web browser) opens a connection with the server and initiates
arequest for a certain resource to be served to it.

The web application hosted on the HTTP server accepts the request,
processes it, and sends back an appropriate response. The web application
interacts with a database and may use certain static resources such as
images and documents to formulate the response.

On receiving the server’s response, it is rendered by the client, and the
connection it has opened is either used for further requests or it is closed.
Thus, the request-response cycle, as depicted in Figure 1-1, drives the
HTTP communication.

CHAPTER 1 DJANGO BASICS

Static
Resources

I HTTP Request|

Application

|

Database HTTP Response

HTTP Server HTTP Client

Figure 1-1. Request-response cycle

Apart from the metadata about the identity of the client (such as the
IP address, the language, the user agent, etc.), the HTTP request has two
important constituents: the URI of the required resource on the server and
the action to be performed on the resource expressed in the form of HTTP
verbs like GET, POST, PUT, DELETE, etc. We shall learn more about them
in the next section.

The HTTP response, on the other hand, includes either the requested
resource or an error message, along with a status code indicative of the fate
of the request (whether successfully processed, required resource couldn’t
be found, request declined by the server, etc.)

HTTP is a stateless protocol, which means that the HTTP server
doesn’t hold on to any identity of the client it had requested to connect.
However, techniques such as cookies and sessions help the developer to
provide an enhanced user experience.

CHAPTER 1 DJANGO BASICS

HTTP Methods

An aspect of the HTTP request that a web application developer has to
deal with the most is the HTTP methods (also called verbs), as it indicates
the action the application must take on the request data. In a typical web
application, requests with the POST, GET, PUT, and DELETE methods are
processed. These methods ask a new resource to be created, retrieve one
or more resources, modify the contents of resources, and remove specified
resources from the server, respectively.

POST Method

An HTTP request with the POST verb indicates that the client wants a new
resource to be created on the server. Obviously, it will need certain data

to form the said resource object. Usually, the request body is populated
with the data filled in an HTML form. In other words, the client uses an
HTML form with its method attribute set to POST. On successful creation
of a new resource, the server responds by sending a message with 201
status code.

GET Method

Every HTTP request is a GET request by default. It expects the server to
render one or more resources in its HTTP response. The server intimates
the content type (plain, HTML, media, JSON, etc.) along with the success
status code (200 OK). In case of failure to process the request, the status
code is 400 (Bad Request) or 404 (Not Found).

CHAPTER 1 DJANGO BASICS

PUT Method

Often, the client requests an existing resource on the server to be modified,
attaching the updated data. The PUT verb conveys this intention to the
server. Again, the server responds with a status code (200 OK) for success
or 404 (Not Found) for failure.

DELETE Method

The client’s request to remove one or more resources altogether from the
server comes with the DELETE verb. The possible status codes are 200
OK for successful processing of the request and 404 Not Found in case of
failure.

It is important to know about two characteristics of the HTTP methods.
They are idempotency and safety.

The HTTP method is said to be idempotent if making several identical
requests has the same effect on the server as making a single request.

Only the POST method is not idempotent, as sending a POST request
again creates another resource. All others (GET, PUT, and DELETE) are
idempotent.

The safety of an HTTP method refers to whether or not it alters the
state of the server. In this respect, the GET method is safe, as it only
performs retrieval. The PUT and DELETE methods are idempotent but
unsafe. The POST method is neither idempotent nor safe.

HTTP defines a few additional request methods as well - such as
PATCH, HEAD, OPTIONS, TRACE, and CONNECT. However, they are
very rarely employed in a typical web application; hence, they find just a
passing mention here.

CHAPTER 1 DJANGO BASICS

CGl

While the World Wide Web (WWW) in its early stages was just a collection
of static web pages, soon various technologies came about to make it
more dynamic and interactive. CGI (Common Gateway Interface) was
one of the earliest tools in this direction. The CGl is a set of standards
recommended for an HTTP server software. Programs in languages such
as C/C++, PHP, Python, and Perl are stored on the server and executed
on the client’s request. These programs, called CGI scripts, generate the
output in HTML format, which the server sends as a response to the client.
The use of Python for web development was primarily as CGI.

A simple Python CGI script served to the browser client is shown in

Figure 1-2.
S st CGI Program = % iﬁ!fusr;bim’pythonB

“ o @ ® localhost/egi-bin/hello.py B print("Content-Type: text/html") #HTTP header
|print{) #blank line
print {'<html>")

He"ﬂ Wﬂl‘ld 0 print ('<head>')
| print ('<title»First CGI Program</titles')
print ('</head>*)
print ('<body:>")
print ('<h23Hello World</h2>")
print ('</bodys’)
print ("</html>")

Web Browser HTTP Server with CGI

Figure 1-2. Python as CGI script

However, the world quickly moved away from CGI because of its
major drawback that it treats each connection request as a new process,
consuming a large memory and thereby resulting in poor performance.

One could achieve better results with the mod_python extension
installed on the Apache web server. However, with many Python-based web
frameworks coming up, along with many web server platforms in addition
to Apache (IIS, Nginx, lighttpd, etc.), the need for a simple and a uniform
interface between Python applications and the web software was felt.

CHAPTER 1 DJANGO BASICS

Having a standard interface makes it easy to use an application that supports
WSGI with a number of different web servers. This thought led the Python
community to the proposal of WSGI.

WSGI

The process of having a standardized interface in place for web servers
and Python-based web applications started with raising a PEP - which
stands for Python Enhancement Proposal - bearing a number 333 in
the year 2003 (and later updated by PEP 3333 in 2010). This proposal is
known as WSGI (Web Server Gateway Interface) and recommends a
set of specifications for the web servers and web application frameworks
for Python.

In a typical web application, there is a server, a certain middleware
object, and the web application itself. As per WSGI specifications, the
workflow between these components should be as follows.

As arequest from the HTTP client (web browser) is received, the
WSGI-enabled server invokes a WSGI application object by passing two
arguments to it. These arguments are

environ: A dictionary-like object that includes key-
value pairs corresponding to different server and
environment variables and their values.

start_response: The application object invokes this
callback function to begin the HTTP response of the
server, with appropriate status codes and response
headers.

The WSGI application object may be a function, a method, or a callable
object. It must return an iterator consisting of a single byte string.

CHAPTER 1 DJANGO BASICS

The following Python function (Listing 1-1) acts as a simple WSGI
application that returns a Hello World string as the response.

Listing 1-1. WSGI Hello World

def wsgiapp(environ, start response):
"""Basic WSGI application object
status = '200 OK'
response_headers = [('Content-type', 'text/plain')]
start _response(status, response_headers)
return ['Hello world!\n']

Figure 1-3 shows the schematics of a WSGI architecture.

Iwmsk::mloca-lha‘s:rsoou HTTP Request =
Hello World HTTP Server With WSGI
: HTTP
A
Web Browser dy ke

def wsgiapp(environ, start_response):
"""Basic WSGI application object"""
status = '28@ OK'
response_headers = [('Content-type', '"textfplain’')]

start_response(status, response_headers)

return ['Hello world!\n']

WSGI Application

Figure 1-3. WSGI

wsgiref Package

To help Python web developers to add WSGI support to a web server, the
Python’s standard library comes with a reference implementation of WSGI
specifications. The wsgiref package has been a part of the standard library
since Python’s version 2.5 onward.

CHAPTER 1 DJANGO BASICS

Thewsgiref.simple server module is a handy implementation of a
threaded HTTP server that serves WSGI applications on a given host and
aport. The make_server() method of the simple server class returns an
instance of WSGI server.

wsgiref.simple server.make server(host, port, app)

You need to call the serve_forever() method of the server object so
that it starts listening to the incoming requests. This module also has a
demo_app() function. It is a WSGI application object that, when invoked,
prints a Hello World message, along with the list of environment variables.

Save the following Python code (Listing 1-2) as main.py and run it to
serve the demo_app on port 8000 of the localhost.

Listing 1-2. WSGI demo_app

from wsgiref.simple server import make server, demo app
server = make server('', 8000, demo_app)
server.serve forever()

Open a new window of your favorite browser and use http://
localhost:8000 as the URL. The browser displays the Hello World text,
followed by a long list of environment variables.

Hello world!

ALLUSERSPROFILE = 'C:\\ProgramData'

APPDATA = 'C:\\Users\\user\\AppData\\Roaming'
CHOCOLATEYINSTALL = 'C:\\ProgramData\\chocolatey'
CHOCOLATEYLASTPATHUPDATE = '133449782501759075"
COMMONPROGRAMFILES = 'C:\\Program Files\\Common Files'
COMMONPROGRAMFILES(X86) = 'C:\\Program Files (x86)\\
Common Files'

COMMONPROGRAMW6432 = 'C:\\Program Files\\Common Files'
COMPUTERNAME = 'GNVBGL3'

CHAPTER 1 DJANGO BASICS

COMSPEC = 'C:\\WINDOWS\\system32\\cmd.exe'

CONTENT_LENGTH = "'

CONTENT _TYPE = 'text/plain'

DRIVERDATA = 'C:\\Windows\\System32\\Drivers\\DriverData'
EFC_14456 = '1°

GATEWAY_INTERFACE = 'CGI/1.1'

HOME = 'C:\\Users\\user'

HOMEDRIVE = 'C:'

HOMEPATH = '\\Users\\user'

Let us use our own Hello World app instead of the pre-installed demo_
app. Save and run the following code (Listing 1-3) as main.py.

Listing 1-3. Hello World WSGI
from wsgiref.simple server import make server

def wsgiapp(environ, start response):
host=environ.get('HTTP_HOST")
start response("200 OK", [("Content-type", "text/html")])
ret = [("<h2>Hello World App on WSGI Server Running at
:{}</h2>".format((host)).encode("utf-8"))]
return ret

server = make server('localhost', 8000, wsgiapp)
server.serve_forever()

The details of the host name and the port number of the web server are
read from the HTTP_HOST header available in environ object. The web
browser shows the output as shown in Figure 1-4 when it visits the URL
http://localhost:8000.

10

CHAPTER 1 DJANGO BASICS

2 @ [localhostsooo % = o X

€< G (D) localhost:8000
Hello World App on WSGI Server Running at :localhost:8000

Figure 1-4. WSGI app

Apart from the simple_server, the wsgiref package also provides
a set of utilities for handling WSGI environment variables and response
headers. It also includes a validation tool, static type checkers, and the
handler classes for implementing WSGI servers and gateways.

You can extend the functionality of the WSGI application beyond
merely displaying a Hello World message, such as presenting web forms
for the user to submit the response, performing database operations
based on the input data, and rendering well-formatted results to the
user. However, building these features in a raw Python code will be
cumbersome, and what is more, with increasing complexity, the solution
will be hit with maintenance and scalability issues.

This is where the web frameworks (also called web application
frameworks) come into the picture. A Python developer has a number
of web frameworks to choose from so as to build a robust and scalable
application that also saves on development time. Django is one of the
most widely used frameworks. Let us first try to understand in brief how a

framework works.

What Is a Web Framework?

In its most generic meaning, the term “framework” stands for a conceptual
structure consisting of objectives, rules, and constraints that acts as a
guide to build a certain product or solve a given problem. In the context

of application software development, a framework is a set of libraries that

11

CHAPTER 1 DJANGO BASICS

provide a generic functionality needed for a certain type of application. It
also performs most of the frequently needed low-level tasks and presents
a basic working template application, in which the developer can include
additional functionality to fine-tune to build the software that fulfills the
requirements.

Thus, a software framework is more of an abstract template or a
skeleton of all the necessary building blocks of a certain application. The
control flow of the application is already pre-decided. The developer only
has to plug in the business logic into the blocks. Hence, it results in rapid
and scalable development.

Web application framework is one of the types of software application
frameworks, the others being

e GUI frameworks

e Game development frameworks
e Testing frameworks

e Machine learning frameworks

e Scientific computing frameworks, etc.

A web application development also involves building its ergonomic
frontenad, with HTML, CSS, and JavaScript technologies. Frontend
frameworks (also called client-side frameworks) encapsulate these
technologies to facilitate rapid Ul development. React and Angular
are popular examples of frontend frameworks. The server-side
frameworks, on the other hand, mainly deal with the application logic
and the database interaction. The term “web framework” generally
refers to the server-side or backend frameworks such as Django.

12

CHAPTER 1 DJANGO BASICS

As mentioned earlier, one can, of course, develop a web-based
application without using a framework (such as Django), but the network-
related operations involved (such as request handling, state management,
etc.) have to be explicitly coded, and it involves a lot of effort, which can
be substantially more than the actual application logic. A web application
framework, on the other hand, lets the developer concentrate on the
application functionality by providing a standard platform to build and
deploy the application. Thus, a web framework facilitates rapid application
development.

The features offered by a web application framework may vary
depending on the scope and the nature of its target application. Some
frameworks are called full stack frameworks. These frameworks are
equipped with all the tools required to develop a fairly comprehensive
application. The term “Batteries Included” is often used to describe them.
Django, the subject matter of this book, is a full stack framework. The
other category is microframeworks. They are minimalistic and lightweight
in nature, with only the essential features. You can, of course, plug in
additional libraries to enhance the scope of the application.

Some of the common tasks handled by a typical web framework are

o User management: An interface that handles user
registration, verifies their identity, and manages roles
and privileges.

o URL mapping: Modern web apps serve their resources
to their users based on the composition of the URL
requested by them. One of the important tasks of a
framework is to map request URLs to specific resources
or views to structure the application’s code.

o File uploads: Most web apps let their users upload
images, documents, and other media on the server. The
frameworks handle this type of task very seamlessly.

13

CHAPTER 1 DJANGO BASICS

o Database interaction: Web applications are invariably
data-driven. The framework facilitates interaction with
a backend database and performs CRUD operations as
and when needed.

e APIservices: This feature allows other applications
or services to interact with the application’s data and

functionality in a controlled manner.

MVC vs. MVT

The Model-View-Controller (MVC) is a popular software design pattern
that aims to divide application logic into three interconnected layers.
These layers in the MVC approach have clearly defined roles as follows:

Controller: The user requests are intercepted by the
controller. It coordinates with the View layer and the
Model layer to send the appropriate response back
to the client.

Model: The model is responsible for data
definitions, processing logic, and interaction with
the backend database.

View: The view is the presentation layer of the
application. It takes care of the placement and
formatting of the result and sends it to the client as
the application’s response.

Figure 1-5 shows the MVC architecture.

14

CHAPTER 1 DJANGO BASICS

request

User

L Controller

interaction update Database

Figure 1-5. MVC architecture

Although the MVC pattern is traditionally used in desktop GUI
development, many web application frameworks also employ this pattern.

The MVT (Model-View-Template) pattern is a slight variation of
MVC. While the Model layer in MVT has a similar role to play as in MVC,
the View layer in MVT is in fact the one that undertakes the processing
logic, and the Template is the presentation layer, performing the role of
View in MVC.

Django adapts the MVT approach. In addition to the Model, View,
and Template, there’s another important stage in Django’s architecture.
It is called URL dispatcher. In fact, the URL dispatcher mechanism is
equivalent to Controller in the MVC architecture. The interaction between
components of the MVT pattern is depicted in Figure 1-6.

Django Application

URL
Dispaich

ITTTP Regfest

Web Browser

Template Static |
Assets

Model @

IITTP Response

Figure 1-6. MVT pattern

15

CHAPTER 1 DJANGO BASICS

When the server receives a request in the form of client URL, the
dispatcher matches its pattern with the predefined patterns and routes the
flow of the application toward its associated view.

Asynchronous Processing

Early versions of Django (before Django version 3.1) supported a
synchronous execution, which is implemented by WSGI-compliant web
servers, such as Apache. Since then, Django has incorporated support
for writing asynchronous views. Django applications can now perform
nonblocking 10 operations and concurrent processing. This coincided
with the induction of the asyncio module in Python’s standard library.

As against in a multithreading, where the main thread opens multiple
threads of operation and the CPU coordinates their execution by a certain
scheduling algorithm, in the asynchronous approach, only a single thread
runs but it has the ability to move on to a next task while the current task is
being processed.

In asynchronous processing, an asynchronous function voluntarily
yields to another function when it reaches an event or a condition so that
by the time the result from the other function is obtained, the original
function can attend some other operations.

Asynchronous processing is done over a single thread, unlike in a
multithreaded process. It is called cooperative multitasking, as its function
pauses its execution and relinquishes control to other functions. It
improves the overall performance by optimizing the system resources.

asyncio Module

The two newly added keywords - async and await - and the induction of
the asyncio module in the standard library brought the asynchronous
support to Python. Normally, when a function is called, it blocks the

16

CHAPTER 1 DJANGO BASICS

execution till its execution is completed. To define a nonblocking
function, it is defined with the async keyword before the def keyword. The
asynchronous functions are called coroutines.

While a normal Python function is defined as

def syncHello():
print ("Hello World")

the coroutine (asynchronous function) is defined as

async def asyncHello():
print ("Hello World")

When prefixed with the async keyword, it returns a coroutine object
and is not invoked like a normal Python function. Instead, it is passed
as an argument to the run() function (refer to Listing 1-4) defined in the
asyncio module.

Listing 1-4. Coroutine
import asyncio

async def asyncHello():
print ("Hello World")

asyncio.run(asyncHello())

The coroutine so defined is an awaitable function. When one coroutine
is called from another with the await keyword, the first function pauses its
execution and yields to the other, till the other completes its run.

The following Python code (Listing 1-5) has two coroutines. The
asyncHello() function sleeps for two seconds before printing the Hello
World message. Note that the sleep() function in the asyncio module is
also an awaitable function. The main() coroutine repeatedly pauses every
time the asyncHello() coroutine is invoked.

17

CHAPTER 1 DJANGO BASICS

Listing 1-5. Async Hello World

import asyncio
import time

async def asyncHello():
await asyncio.sleep(2)
print("\tHello World")

async def main():
for i in range(1, 4):
print ("Iteration:", i)
print(f"\tstarted at {time.strftime('%X')}")
await asyncHello()
print(f"\tfinished at {time.strftime('%X')}")

asyncio.run(main())

The output shows how cooperative multitasking takes place between
the two coroutines.

Iteration: 1

started at 00:02:11

Hello World

finished at 00:02:13
Iteration: 2

started at 00:02:13

Hello World

finished at 00:02:15
Iteration: 3

started at 00:02:15

Hello World

finished at 00:02:17

18

CHAPTER 1 DJANGO BASICS

ASGI

The classical WSGI interface is not suitable for modern web protocols such
as WebSocket. To take advantage of the async capabilities of Python (added
since version 3.5 onward), a new set of specifications have been developed.
This is called Asynchronous Server Gateway Interface (ASGI). The
asgiref module is a reference implementation of ASGI. It is not a part of
Python’s standard library and hence needs to be installed manually. Also,
the asgiref module doesn’t come with a development server (the wsgiref
module has an HTTP server in the form of simple_server object). Hence,
we also need to install an ASGI server module such as Uvicorn or Daphne.
To install asgiref and Uvicorn, use the PIP utility:

pip3 install asgiref
pip3 install uvicorn

The ASGI application is an asynchronous callable (coroutine) that
takes three parameters: send, receive, and scope.

The send and receive parameters are asynchronous callables that
enable the application to send and receive event messages to and from
the client, respectively. The scope parameter is a dict containing details
of a specific connection provided by the server, such as the protocol,
headers, etc.

The minimal ASGI Hello World application to be run with the Uvicorn
server is given below. Save the following code (Listing 1-6) as main.py.

Listing 1-6. ASGI Hello World
import uvicorn

async def app(scope, receive, send):
await send({
"type': 'http.response.start’,
'status': 200,

19

CHAPTER 1 DJANGO BASICS

"headers': [
[b'content-type', b'text/html'],
])
1)

await send({

"type': 'http.response.body’,

"body': b'<h2>Hello World App on ASGI Server</h2>',
1)

if _name_ ==" main_":
uvicorn.run("main:app", port=5000, log level="info")

Run the above Python script and visit http://localhost:5000/ to get the
ASGI app running in the browser (Figure 1-7).

g {f’g D localhost:5000 x |+
. &~ O () localhost:5000

' Hello World App on ASGI Server

Figure 1-7. ASGI app

For Django version 3.1 and above, the asgiref library is a core
dependency. It makes Django add ASGI features like asynchronous
workflows and nonblocking I/O operations in the application to achieve
better performance and scalability. One of the main features of asgiref
is the SyncToAsync wrapper, which allows the synchronous code in
asynchronous context without any rewrite. ASGI is thus a superset of WSGI
specifications.

Modern Django apps such as Channels and Django REST Framework
rely heavily on ASGI for handling WebSocket connections, asynchronous
background tasks, etc.

20

CHAPTER 1 DJANGO BASICS

Overview of Django

The preceding sections of this chapter presented a brief review of some
important foundational aspects that would help the learner understand
the concepts, the design philosophy, and the architecture of the Django
framework with more clarity. It is now time to know more about the
Django framework itself.

As mentioned earlier, Django has been around for close to two
decades. It is the most preferred tool for Python web developers. First
developed in 2005 by Adrian Holovaty and Simon Willison, the Django
project is being maintained by the Django Software Foundation. In the
plethora of Python web frameworks, Django stands out because of the
following features.

Batteries Included

“The web framework for perfectionists with deadlines” - this is the
tagline of Django. Django is considered to be a full-stack web application
framework. The Django package is bundled with all the necessary
components required to build a full-fledged web application. Django has
its own templating system (Django Template Language), object relation
model (Django ORM), and regex-based URL dispatcher. Unlike the other
microframeworks, you don’t need to install any other libraries for these
core activities.

Utility Apps

The Django package is also bundled with a number of applications for
general-purpose consumption. The contrib package provides a robust
admin and authentication system, built-in security mechanism to prevent
CSRF and SQL injection attacks, and much more.

21

CHAPTER 1 DJANGO BASICS

Scalability

Django uses a “shared-nothing” architecture. It is designed to
accommodate additional hardware - such as database servers, caching
servers, or web/application servers at any point of the lifetime of a web
application. It separates the components such as its database layer and
application layer very cleanly.

Documentation and Support

For an open source project, Django has very excellent and comprehensive
documentation. Besides, Django has a large and active community of
developers. A lot of resources such as books, tutorials, articles, and forums
are available for an aspiring Django developer. The significant user base
of Django includes some well-known organizations such as Instagram,
Mozilla, Disqus, etc.

It may be noted that Django is considered as an opinionated framework.
While this has certain advantages such as a cleaner and consistent code that
is easier to maintain, it has a steeper learning curve as compared to many
of the other frameworks. Also, it is not flexible enough to let the user choose
the tools other than those bundled with the Django package.

Summary

This chapter aims to refresh some of the fundamental concepts of web
application and web frameworks. With specific reference to Python’s web
frameworks, the role of WSGI and ASGI has been explained in this chapter.

The stage is now set for us to explore the Django framework and the
associated tools in the Django ecosystem. In the next chapter, we shall
write our first Django application and also get acquainted with Django’s
admin interface.

22

CHAPTER 2

Django: First Steps

As compared to some of the other, simpler Python-based web frameworks,
to get started with Django is a little difficult. This is mainly because

it follows a fairly rigid process of building an app. Django is also very
particular about the project structure and the nomenclature. Its extensive
features and the batteries included approach make Django an opinionated
framework, and hence, it has a steeper learning curve as compared

to others.

Precisely for this reason, it is important we spend enough time to
understand how different components of a Django app work and their
interplay. This chapter navigates you through the seemingly tricky
early stages.

This chapter explains the following topics:

e Install Django

e Setup the Django project
e Addingan app

o Define views

e Mapping a view to URL

o Serving web pages

e Django admin site

© Malhar Lathkar 2025 23
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_2

https://doi.org/10.1007/979-8-8688-1472-3_2#DOI

CHAPTER 2 DJANGO: FIRST STEPS

Install Django

Django is an open source Python package. Obviously, you need to have
Python installed on your computer. In the case of Linux, most of the
distributions today come with Python3 bundled with them. However,
different versions of Django need specific versions of Python. For Django
versions 4.x and 5.x, the minimum Python version needed is Python 3.8. The
Ubuntu Desktop 22.04 LTS distribution, for example, comes with Python
3.10 preinstalled, which is fine for installing Django 4 as well as Django 5.
The Django 4.2 x series is the last to support Python 3.8 and 3.9 versions.

However, it is recommended that you use the latest release of each
Django series and the latest Python version. As of December 2023, Python
3.12.1 is the latest version, and Django 5.0.1 is the latest Django version.

In the case of Windows 10 or Windows 11, Python is not pre-installed.
So you need to download the installer of the latest version and run it.
(Make sure that the Python installation directory is added to the PATH
environment variable).

With this first step done, let us proceed to the installation of Django.
The preferred way of installing Django (as also any Python package)
from the official Python package repository is to use PIP utility. Python
also recommends using isolated environments (also called virtual
environments) rather than system-wide installation of packages. The venv
module facilitates creating and managing the virtual environment.

Installation on Ubuntu

The PIP utility as well as the venv module are not a part of Python software
on Ubuntu distributions. Hence, it has to be installed with the help of
Ubuntu’s APT package manager. Use the following command in the
Ubuntu terminal:

sudo apt install python3-pip

24

CHAPTER 2 DJANGO: FIRST STEPS

To add venv to Python’s library, use the following command:

sudo apt install python3-venv

We shall now create a virtual environment and install Django in it. To
begin with, create a new directory workspace inside the user’s home. Enter
the directory and create a virtual environment with its name as djenv:

mkdir workspace
cd workspace
~/workspace$ python3 -m venv djenv

This will create another directory (djenv) inside the workspace. The
virtual environment will have the directory structure shown in Figure 2-1.

Q = = =] *

£ me workspace H Q E | v

% Starred bin include lib libs4 pyvenv.cfg

djenv

(it Home

B Documents
4 Downloads
I Music

[&] Pictures

B videos

Figure 2-1. Python virtual environment

The bin directory contains a copy of Python executable, PIP utility, as
well as a script to activate the environment. Figure 2-2 shows the contents

of the bin directory.

25

CHAPTER 2 DJANGO: FIRST STEPS

bin : C El~|l = - fu] *
0 Recent
% Starred activate activate. activate, Activate. pip pip3
csh Fish psi

{3t Home
[Documents \ B '3 IB

pip3.10 python python3 python3.10
4 Downloads

7 Music

(& Pictures

Figure 2-2. Virtual environment scripts

Activate the virtual environment with the following command:
~/workspace$ source djenv/bin/activate

The name of the environment now appears on the left of the prompt.
(djenv) malhar@ubuntu:~/workspace$

Now we can install Django inside this virtual environment with the

following command:
(djenv) malhar@ubuntu:~workspace$ pip3 install django>4.2

The default Django version in the Ubuntu repository may not be the
latest one. Hence, we have asked the version greater than 4.2 (which is
5.0.1) to be installed.

Along with Django, certain other packages are also installed. The list of all
the packages in the environment is obtained by the pip freeze command.

(djenv) malhar@ubuntu:~/workspace$ pip3 freeze
asgiref==3.7.2

Django==5.0.1

sqlparse==0.4.4

typing extensions==4.9.0

26

CHAPTER 2 DJANGO: FIRST STEPS

To double-check the correct installation of Django, start the Python
interpreter, import Django, and check its version.

(djenv) malhar@ubuntu:~/workspace$ python3

Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]
on linux

Type "help", "copyright", "credits" or "license" for more
information.

>>> import django

>>> django.__version__

'5.0.1"

The installation adds a Django-admin command-line utility in the bin
folder of the virtual environment, as shown in the Figure 2-3.

bin H C = v| = i o x
0 Recent
* Starred activate activate. activate, Activate. django- pip
csh Fish psi admin

{3t Home =
[# Documents | B \j | 3

pip3 pip3.10 python python3 python3.10 sqlformat
4 Downloads

7 Music

[&] Pictures

Figure 2-3. django-admin utility

The django-admin utility has been provided to perform many
administrative tasks such as project creation and management, creating
the skeleton of a typical Django app, starting the Django development
server, and many more. We shall shortly use this utility for building our
first Django app.

27

CHAPTER 2 DJANGO: FIRST STEPS

Installation on Windows

The procedure for installation of Django on Windows is almost similar. On
Windows, the Python executable and the utilities for package installation
(PIP) and activation of the virtual environment (activate.bat) are placed

in the scripts subfolder of the virtual environment folder (djenv).

Figure 2-4 displays the contents of the scripts directory.

= (8] x
Scripts x =+
€ ™ C J » - workspace > djenv > Scripts Search Scripts
P New Tl Sort =S View (B Details
> workspace activate P python.exe
v djens = ==
[l b «]activate bat # pythonw.exe
Inched
nclude ¥ Activate.psl
A Litx [&
= |deactivate bat
¥ site-packages I -
A pip.exe
pip ‘
@ pip3.12.exe
pip-23.2.1.dist-info
A pip3.exe
Scripts
9items =0

Figure 2-4. Python virtual environment in Windows

To activate the virtual environment on Windows, run the following
command in the command prompt window (here it is assumed that the
virtual environment djenv is created inside the C:\workspace folder):

C:\workspace>djenv\scripts\activate

The name of the virtual environment appears on the left of the
command prompt. You can install Django with the same command as in
the case of Ubuntu.

(djenv) C:\workspace>pip3 install Django

28

CHAPTER 2 DJANGO: FIRST STEPS

Set Up the Django Project

Django has been developed with the objective of providing a tool for
building a complex, robust, modular, and scalable web-based application.
An enterprise application may have multiple submodules (Django calls
them as apps), and they may be interacting with each other. They can
even share certain resources and parameters. A project in Django controls
the common features of its apps. It is essentially a high-level structure of
your entire application. A project is a hierarchical structure of folders and
files that holds all the essential components like database configuration,
Django-specific options, and application-specific settings.

As mentioned earlier, a command-line utility called django-admin
is made available along with the installation of Django. This utility helps
you perform different actions. The very first use of this utility is to create a
project structure. Django’s recommended way is to run the startproject
command with the django-admin utility.

In your OS terminal, ensure that you are in the workspace directory,
and run the following command to create a Django project with the name
firstproject:

(djenv) C:\workspace>django-admin startproject firstproject

This will create a file structure inside the workspace directory as shown
in Figure 2-5.

L—firstproject
manage.py
firstproject

asgi.py

settings.py
urls. py
wsgi.py
__init__.py

Figure 2-5. Django project structure

29

CHAPTER 2 DJANGO: FIRST STEPS

There are two folders named firstproject in the figure. The outer one
acts as the root of your project. The inner directory of the same name is a
Python package (as is evident by the fact thatithas the _init_.py file).
Django auto-generates a file (settings.py) defining the default values of a
number of parameters such as installed apps, database configuration, URL
dispatcher, etc. We shall come to know more about different configuration
settings later in this chapter, and also as we go along. There are a few more
Python modules also in the inner project package folder:

settings.py: We have talked a little about this earlier.
Django creates this script with certain default values
of various parameters such as database connection,
URLCONEF path, location of templates and static
assets, etc. You may want to add or modify the
settings as required.

urls.py: This module is called URLCONE Django
uses this script to locate the view that matches with
the request URL. The urlpatterns of all the apps are
registered with the URLCONTF of the project.

wsgi.py: This module uses the project’s settings and
returns a WSGI application object. Any WSGI-
compatible server can use this object to serve the
application.

asgi.py: From version 3.2 onward, Django supports
ASGI specifications. The module is the entry point
for ASGI-compatible web servers such as Uvicorn or
Daphne to serve your project.

Let us turn to the Python script in the top-level root folder - manage.
py file. Think of it as a local copy of the django-admin command-line
utility. All the administrative tasks (that django-admin can perform)
can also be done with the manage. py script. In fact, using manage. py is

30

CHAPTER 2 DJANGO: FIRST STEPS

more convenient especially if you are dealing with a single project. If the
application involves multiple Django projects, the django-admin utility is
more suited.

For now, we want to check whether the project we have just created
(firstproject) works. Use the manage. py script to start Django’s built-in
development server with the following command. Ensure that the current
directory of your command-line console (Command prompt in Windows,
or the terminal in Linux) is the top-level root project folder.

(djenv) C:\workspace\firstproject>python manage.py runserver
In the terminal, you should see an activity log similar to this:
System check identified no issues (0 silenced).

You have 18 unapplied migration(s). Your project may not work
properly until you apply the migrations for app(s): admin,
auth, contenttypes, sessions.

Run 'python manage.py migrate' to apply them.

February 02, 2024 - 23:40:27

Django version 5.0.1, using settings 'firstproject.settings'
Starting development server at http://127.0.0.1:8000/

Quit the server with CTRL-BREAK.

Ignore the migrations-related warning for now, and note that
the server has started. Head over to your favorite browser, and enter the
URL http://127.0.0.1:8000/ and see if it shows the output as in the
Figure 2-6.

31

http://127.0.0.1:8000/

CHAPTER 2 DJANGO: FIRST STEPS

g f@ m The install worked successfullyl - x| ==
&< G 127.0.0.1:8000 ot [
django View release notes for Django 5.0
A
(]
The install worked successfully! Congratulations!
You are seeing this page because DEBUG=True is in your
settings file and you have not configured any URLs
Q Django Documentation ¢» Tutorial: A Polling App 22 Django Community

Figure 2-6. The Django server runs successfully

If everything goes well, you should see the above display. The caption
itself is self-explanatory.

The Django project can be served without the built-in Django
development server. Since Django is a WSGI-compatible framework, the
simple server defined in the wsgiref package is capable of serving it. As
mentioned earlier, the wsgi.py module from the project’s Python package
returns a WSGI application object. The following code serves the Django
project as a pure WSGI application:

32

CHAPTER 2 DJANGO: FIRST STEPS
import firstproject.wsgi as ws

from wsgiref.simple server import make_ server
server = make server('localhost', 8000, ws.application)
server.serve forever()

To run a Django application in ASGI-compatible mode, we need an
ASGI web server, as it is not bundled with Python’s standard library. The
Daphne package is an ASGI server, optimized for Django’s asynchronous
features.

Let us install the Daphne package first.

(djenv) C:\workspace>pip3 install daphne

The asgi module in Django’s project package defines the ASGI
application object. Daphne has a simple command-line interface to
launch the server and serve the application:

(djenv) C:\workspace\firstproject>daphne firstproject.
asgi:application

With the project structure successfully created, we are now good to go
ahead and create a Django app in it.

Django App

The Django project is a complete web application whose functionality may
have multiple submodules. In Django parlance, the submodules are called
apps. Thus, a Django project may have one or more apps. On the other
hand, an app may be a part of one or more projects. In that sense, a Django
app is an entirely stand-alone application capable of becoming a part of a
bigger project.

33

CHAPTER 2 DJANGO: FIRST STEPS

Think of an e-commerce website of a company dealing in electronic
products as an example of a Django project, wherein its various
components such as products, customers, and orders are handled by
individual apps. The project facilitates the transactions between the apps.

If built with its reusability in mind, any of the apps can be added to
another project. To extend the example, the product app can be included
in the e-learning marketplace website as well.

In the previous chapter, we learned that Django uses the MVT
approach. In fact, it is the app (not so much the project) that implements
the MVT architecture. The project primarily acts as the URL dispatcher, as
we shall come to know shortly.

A Django app is a Python package. The app package folder with some
auto-generated modules is created by the startapp command.

(djenv) C:\workspace\firstproject>python manage.py startapp
firstapp

This command is run while the current directory is the project root.
The app package is created alongside the project app, under the project
root directory, as in the Figure 2-7.

L —firstproject
db.sqlite3
manage.py

firstapp
admin. py
apps.py

models. py
tests.py
views.py
__init__.py

migrations
__dinit__.py

Figure 2-7. Django app structure

34

CHAPTER 2 DJANGO: FIRST STEPS

Add an App

After the app folder with the above structure is created, it must be included
in the project. When we create a project with the startproject command,
the project’s default settings are stored in the settings.py module. Django
also installs certain utility apps such as the admin app, the session
management app, etc.; the list is available in the INSTALLED_APPS
settings. Open the settings.py file and include this app (firstapp) at the
end of the list.

Application definition

INSTALLED APPS = [
'django.contrib.admin’,
'django.contrib.auth’,
'django.contrib.contenttypes’,
"django.contrib.sessions’,
'django.contrib.messages’,
'django.contrib.staticfiles’,
'firstapp’,

Define Views

As mentioned earlier, the View layer in Django’s MVT architecture is where
the processing logic is defined. A view is a Python function or a class that
has been assigned the job to process the incoming request and formulate
an appropriate response to be returned to the client. The startapp
command auto-generates a views.py module, which is more or less empty
(there is a solitary import statement) to begin with.

Let us plan to add two view functions. We want that the index()
function should be invoked when the user’s request URL is http://
localhost:8000/firstapp/, and it should return a Hello World message.

35

CHAPTER 2 DJANGO: FIRST STEPS

The other view function about() should render a message such as “Know
more about this app’, in response to the URL http://localhost:8000/
firstapp/about/.

The Django server provides the HttpRequest object as an argument to
a view function, which returns an object of Ht tpResponse class (defined in
the django.http module).

Add the functions shown in Listing 2-1 in the views.py file.

Listing 2-1. views.py
from django.http import HttpResponse

def index(request):
return HttpResponse("<h2>Hello, World. This is the home
page of FirstApp.</h2>")

def about(request):
return HttpResponse("<h2>Know more about FirstApp.</h2>")

Define urlpatterns

The URL pattern is a mapping of a view to its desired request

URL. Typically, the urlpatterns are defined in a urls.py module in the app
package folder. This file doesn’t exist by default, so we need to create a
new one with this name. The path() function defined in the django.urls
module creates the association of a URL route with the view function.

path(route, view, kwargs=None, name=None)

The route argument is a string representing the URL pattern. The string
contains the tailing path_info part of the URL, excluding the hostname and the
prefix. For example, in the URL http://localhost:8000/firstapp/about/, firstapp
is the prefix after the hostname; hence, the route argument is “about/”.

The view argument is the name of the function in the views.py module.
The “about/” route is to be mapped to the views.about() function.

36

CHAPTER 2 DJANGO: FIRST STEPS

The name argument, though optional, should be provided as it proves
useful in forming named urlpatterns (we shall learn more about this
feature later).

Create a new Python module named urls.py and save the code shown
in Listing 2-2 in it.

Listing 2-2. urls.py (in app)

from django.urls import path
from . import views

urlpatterns = [
path("", views.index, name="index"),
path("about/", views.about, name="about"),

Update URLCONF

The urls.py module in the project package is referred to as URLCONE. It
includes the urlpatterns of all the installed apps in the project. When a
client request is received, Django locates a matching view function from
the registered patterns. We need to include the urlpatterns of the app
(firstapp/urls.py) in the URLCONF of the project (firstproject/urls.
py). The include() function from the django.urls module does this job.
Listing 2-3 shows the updated urlpatterns list.

Listing 2-3. urls.py (in project)

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path("firstapp/", include("firstapp.urls")),
path('admin/', admin.site.urls),

37

CHAPTER 2 DJANGO: FIRST STEPS

The 'admin/’' route has been registered in the list of patterns by default.
We shall discuss this later in this chapter.

So we have done everything that is required to serve our app. Start the
Django server, and visit http://localhost:8000/firstapp/ to get the Hello
World message displayed in the browser.

Change the URL to http://localhost:8000/firstapp/about/, and the
browser displays the output as shown in Figure 2-8.

g {ffj D localhost: 28000/ firstapp/about/ b 4 +

(3 (D localhost:8000/firstapp/about

Know more about FirstApp.

. 4

Figure 2-8. Django app route

Path Parameters

We know that the Django server provides the HttpRequest object as a
mandatory argument to a view function. However, you can declare a view
with additional parameters that can be fetched from the urlpatterns.

Let us define a user() function as a view in our app, with name as a
string parameter. The function inserts the received string in the Welcome
message to be returned as the response.

def user(request, name):
return HttpResponse(f"<h2>Hello, {name}. Welcome to the
home page of FirstApp.</h2>")

This function needs to be mapped with a URL route user/ in the app’s
URL pattern list. This route needs to have a variable part corresponding
to the parameter of the view function and must be put inside angular
brackets < and > for Django to capture the value and pass to the function.

38

CHAPTER 2 DJANGO: FIRST STEPS

In this case, as the URL route should be user/<name>/ and mapped
with the views.user function, add the following pattern (shown in bold) in
the app’s URL pattern list:

from django.urls import path

from . import views

urlpatterns = [
path("", views.index, name="index"),
path("about/", views.about, name="about"),
path("usex/<name»/", views.user, name="user"),

Make the changes in both the modules - views.py and urls.py - and
start the server. Use the URL http://localhost:8000/firstapp/user/Kevin
and check if the response in the browser is as in the Figure 2-9.

® i .
- @ D localhost:8000/firstapp/user/Kew % +

<« O (D localhost:8000/firstapp/user/Kevin/ A0 o [

| Hello, Kevin. Welcome to the home page of FirstApp.

Figure 2-9. Path parameters in URL

At times, you may need to pass the path parameters of some other
types. By default, the parameter inside the angular brackets is of str type.
For other types, the appropriate path converter prefix must be included.
For example, it should be <int:userID> to let Django interpret the
parameter as an integer.

Here’s the list of the path converters recognized by Django:

str: Matches any non-empty string. In the above
example, we could have written <str:name>;
however, it is the default if a converter isn’t included
in the expression.

39

CHAPTER 2

DJANGO: FIRST STEPS

int: To read an integer parameter from the URL,
use int: inside the angular brackets, for example,
<int:userID>. Any non-negative integer may be
present.

slug: A slug is a string that can only include
characters, numbers, dashes, and underscores.
In this case, a string consisting of ASCII letters
or numbers plus the hyphen and underscore
characters that identifies a particular page on a
website. For example, <slug:post_title>.

uuid: This converter matches a formatted UUID. As
a convention, to prevent multiple URLs from
mapping to the same page, dashes must be included
and letters must be lowercase.

path: This converter matches any non-empty string,
including the path separator, ‘/; so as to allow you
to match against a complete URL path rather than a
segment of a URL path as with str.

In the forthcoming chapters, we shall be using these path converters in

the formation of urlpatterns.

Serving Web Pages

The view function returns its response in the form of an HttpResponse

object, with a string as its content. In addition, other HTTP headers may

be included in the constructor. By default, the Content_Type header is

text/html. Hence, any HTML tags included in the response string will be

accordingly parsed by the browser. You can, of course, set it to any other

type, such as application/json if you wish to formulate a JSON response

(usually in the case of APIs).

40

CHAPTER 2 DJANGO: FIRST STEPS

Instead of passing raw HTML strings, Django allows to serve an HTML
page as the response. A very handy render () function, defined in the
django.shortcuts module, is used for the purpose. Django can render a
static web page as well as a web page in which a dynamic content can be
inserted, such a page being called as a template.

To render a web page, the Django server checks if the page is available
in any of the directories in the DIRS attribute of the TEMPLATES setting.
Conventionally, the template folder under the project root folder is the
place where templates are put. The project root folder is referred to by
BASE_DIR.

Create a directory named templates under the project root, locate the
TEMPLATES section in the settings.py file, and set the DIRS attribute as
shown in Listing 2-4.

Listing 2-4. settings.py (TEMPLATES section)

TEMPLATES = [
{

"BACKEND': 'django.template.backends.django.

DjangoTemplates',

'DIRS': [BASE_DIR/'templates'],

"APP_DIRS': True,

"OPTIONS': {

"context_processors': [

'django.template.context processors.debug’,
"django.template.context processors.request’,
'django.contrib.auth.context _processors.auth’,
'django.contrib.messages.context processors.
messages ',

1,
b
1

41

CHAPTER 2 DJANGO: FIRST STEPS

Inside the templates folder, save the HTML script shown in Listing 2-5
as index.html.

Listing 2-5. index.html

<html>
<body>
<h2>Hello, World. This is the home page of FirstApp.</h2>
</body>
</html>

To render this page as the response of index view, modify its definition
in views.html as in Listing 2-6.

Listing 2-6. views.py
from django.shortcuts import render

def index(request):
return render(request, 'index.html')

Run the server again and visit the index route in your browser. Now,
the contents of index.html are displayed.

In the above code, the render () function is called. The first argument
passed to this function is the HttpRequest object that the view receives
from the server. The contents of the HTML page (the second argument) is
returned as the HttpResponse.

The render () function can also have a third argument called context.
Itis a dictionary object, whose values are inserted in the template tags
placed inside the HTML code. Django has an elaborate template system,
with which data from sources such as databases can be inserted to
generate dynamic web pages. We have a complete chapter on all the
powerful features of Django Template Language, later in this book.

42

CHAPTER 2 DJANGO: FIRST STEPS

Admin Site

A fully customizable, automatic admin interface is one of the most
powerful features of Django. However, it should be only used as an
organization’s internal management tool. The admin app is automatically
added to the project as a result of the startproject command.

The admin interface depends on the django.contrib.admin app.
You'll find it in the INSTALLED_APPS section of the settings.py (along
with its dependencies).

INSTALLED APPS = [
'django.contrib.admin’,
'django.contrib.auth’,
"django.contrib.contenttypes’,
"django.contrib.sessions’,
"django.contrib.messages’,
'django.contrib.staticfiles’,

The startproject template also includes the admin app in the
URLCONTEF of the project. The default code in the urls.py file in the project
package folder is shown in Listing 2-7.

Listing 2-7. urls.py (in project)

from django.contrib import admin
from django.urls import path

urlpatterns = [
path('admin/', admin.site.urls),

43

CHAPTER 2 DJANGO: FIRST STEPS

The pre-installed apps use database tables to store and retrieve
information. We need to create the database tables necessary for these
apps. Run the migrate command to use the models in these apps and
build their respective table structure. We shall learn more about migration
in a subsequent chapter.

Django uses a SQLite database by default. You'll find db.sqlite3 created
in the project root folder. Django can be configured to use any other type of
database (such as MySQL), for which we will have to modify the database
configuration in the project’s setting module. For now, we shall stick to
SQLite database.

In fact, migrate is a django-admin command. However, we shall
execute it with the manage. py script as follows:

(djenv) D:\workspace\firstproject>python manage.py migrate
The console shows a log similar to the following:

Operations to perform:

Apply all migrations: admin, auth, contenttypes, sessions
Running migrations:

Applying contenttypes.0001 initial... OK

Applying auth.0001 _initial... OK

Applying admin.0001_initial... OK

Applying sessions.0001 initial... OK

The required tables are thus created. You need at least one user to be
able to use the admin panel. A user is an object of the User class found
in the django.contrib.auth.models module. Use the createsuperuser

command as follows:

(djenv) C:\workspace\firstproject>python manage.py
createsuperuser

44

CHAPTER 2 DJANGO: FIRST STEPS
You will be asked to furnish the following details:

Username (leave blank to use 'mlath'): admin

Email address: admin@example.com

Password: itk

Password (again): idokokkodx

The password is too similar to the username.

This password is too short. It must contain at least 8
characters.

This password is too common.

Bypass password validation and create user anyway? [y/N]: y
Superuser created successfully.

Now, we can launch the Django development server and open the
admin site at the URL http://localhost:8000/admin/. Your browser should
display a login screen as in the Figure 2-10.

| —
: @ D Log in | Django site admin x = = S
&~ @] () localhost:8000/admin/login/?next=/admin/ Ad

: Django administration @
|
Username:
admin
| Password:
l Gy
|

LOG IN

Figure 2-10. Login screen of the admin site

45

CHAPTER 2 DJANGO: FIRST STEPS

Enter the login credentials of the superuser we just created to get to the
home page of the admin site (refer to the Figure 2-11).
? 3 @ B Site administration | Django site. X | =+ = = X

S () localhost:8000/admin/ 2 A Y

Django administration

WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG OUT 0

| Site administration

AUTHENTICATION AND AUTHORIZATION

Groups + Add # Change

Users + Add # Change

Figure 2-11. Home page of the admin site

To add a new user, click the + symbol in the Users row. An interface as
shown in the Figure 2-12 opens up. Enter username and password for the

new user.

46

CHAPTER 2 DJANGO: FIRST STEPS

@ @ Adduser|Django site admin X e o= o X

&« O @) localhost:8000/admin/auth/user

WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD

Home » Authentication and Authorization » Users

Add user
First, enter a username and password. Then, you'll be able to edit more user options.

Username: testuser

Password: 000 sssesess

Password confirmation:

v

Figure 2-12. Add a user

A user belongs to any of the following types:

superuser: A user object that can log into the
admin site and possesses permissions to add/
change/delete other users as well as perform CRUD
operations on all the models in the project, through
the admin interface itself.

staff: The User objecthas an is_staff property.
When this property is set to True, the user is able to
log in to the Django admin site. However, a staff user
doesn’t automatically get the permission to create,

47

CHAPTER 2 DJANGO: FIRST STEPS

read, update, and delete data in the Django admin;
it must be given explicitly. The superuser is a staff
user by default.

active: All users are marked as active by default.
However, a user may be marked as inactive if

its authentication fails or has been banned for
some reasons. A normal active user (without staff

privilege) is not authorized to use the admin site.

Check/uncheck the boxes as shown in Figure 2-13 to make the user a

superuser, staff, or just an active user.

Jesignates that this user has all permissions without exphcitly assigning them

Figure 2-13. User permissions

A superuser has all the privileges to add a new user, grant or revoke
permissions to other users, create and grant roles to a group of users, etc.

Django has a built-in Python shell that helps in performing the same
user management tasks with this command-line interface that we have
learned to perform with the help of the admin site.

To invoke the Python shell, use the following command:

python manage.py shell

Against the Python prompt, import the User class and call its
create superuser () function. Give the username, email, and password
parameters.

48

CHAPTER 2 DJANGO: FIRST STEPS

>>> from django.contrib.auth.models import User

>>> usr=User.objects.create_superuser('manager', 'manager@abc.
com', 'pass123')

>>> usr.save()

With the create_user() function, create a normal user.

>>> from django.contrib.auth.models import User
>>> usr=User.objects.create user('testusr', 'test@abc.com’,
'pass123')

To enable logging in to the admin site with this newly created user, set
itsis_staff property to True.

>>> usr.is staff=True
>>> usr.save()

This shell inside the Django environment is an extremely useful tool
with the ability to execute Python code and interact with your project
directly. It may be used for different purposes such as testing models,
inspecting data in your database, and, in general, experimenting with
Python code within the context of your project.

We shall be dealing with the admin site later in this book when we
learn about authentication and authorization.

Summary

This chapter explained how to build a basic Django project and an app.
In this chapter, we also learned how the admin interface of a Django site
works and how to create users with web as well as shell interface.

In the next chapter, we shall explore the Model layer of Django
architecture. We shall learn how to configure a database and perform
migrations.

49

CHAPTER 3

Django ORM

In the previous chapter, we discussed the View layer of the Django
application. We learned how to write views and how to map URL routes
to them. In this chapter, we shall learn about the Model layer - the second
component of Django’s MVT (Model, View, and Template) architecture.
Large, complex, and dynamic web-based applications are always data
driven. The application invariably uses a certain database backend for
data storage and retrieval. Instead of interacting with the database with
raw SQL queries, Django recommends handling the database through
an abstraction layer having Python objects called models. By the end
of this chapter, you will be able to write models, perform migrations to
build databases representing the models, and perform CRUD operations
through the model object.
In this chapter, the following topics will be covered:

¢ DB-API

« ORM

o Database configuration
e Model class

o Migrations

e Django admin shell

© Malhar Lathkar 2025 51
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_3

https://doi.org/10.1007/979-8-8688-1472-3_3#DOI

CHAPTER 3 DJANGO ORM

o CRUD operations
e Model field types

e Model relationships

DB-API

The Python Database API (DB-API) is a collection of specifications
recommended to be implemented by the database access modules for
any relational database. Python modules acting as interface for respective
relational databases - such as mysqldb or mysqlclient for MySQL, psycopg
for PostgreSQL, etc. - use the same set of classes, objects, and functions as
defined in DB-API. The standard library bundled with Python distribution
includes the sqglite3 module, which is a reference implementation of DB-
API, and is meant to be used with the SQLite database.

SQLite is a lightweight, file-based, serverless database. Python’s
standard library readily provides built-in support for working with it
in the form of sqlite3 module. In fact, a Django project set up with the
startproject template is configured to use the SQLite database by
default.

To interact with a database, the first step is to establish a connection
and obtain a connection object.

import sqlite3
conn=sqlite3.connect("mydata.sqlite3")

Next, we need to obtain a cursor object that acts as a handle to the
database. The cursor object is responsible for executing all the SQL queries
that perform CREATE, RETRIEVE, UPDATE, and DELETE operations
(popularly known by the acronym CRUD).

cur=conn.cursor()

52

CHAPTER 3 DJANGO ORM

All we need to do now is call the execute() method of the cursor
object and pass a string representing a valid SQL query to it.

For example, the code in Listing 3-1 creates a Books table with a given
field structure in the mydata.sqlite3 database.

Listing 3-1. Create table
import sqlite3

conn=sqlite3.connect("mydata.sqlite3")
cur=conn.cursor()

qry="""'

CREATE TABLE IF NOT EXISTS Books (
id INTEGER (10) PRIMARY KEY,
title STRING (50),
author STRING (20),
price INTEGER (10),
publisher STRING (20)

)5

cur.execute(qry)
conn.close()

The database is created in the current working folder and can be
verified with any SQLite viewer app (Figure 3-1).

53

CHAPTER 3 DJANGO ORM

& SOLiteStudio (34.4)

Database Structure View Tools Malp

S E2E

A B L 8 R i

=5 F

| Databases

& X | [Books (@)

oL

| snucew paa

Constraints Indexes Triggers

@B o oD sk XA A =2

Tabls name; Baoks

_| wTHouT RowE [| STRICT

Name
1id
2 title
3 author
4 price

Primary Foreign
Key

INTEGER (10) i

STRING (50)

STRING (20)

INTEGER (10)

kNot

Unique Checl NULL

Data type

Collate Generated Defal

5 publisher STRING (20)

Figure 3-1. Table in SQLite

Let us also add a few test records in the Books table using the GUI

provided by the viewer app itself (refer to Figure 3-2).

|| Books (db) =%
Structure Data Constraints Indexas Triggers DbDL
Grid view Farm view
8 8- 880 06 :08 = K &4 Tr = Total rows loaded: 3
id title author price publisher
& 1! Decoupled Django Gagliardi 3874 APress
2 2 Beginning Django Rubio 3053 APress
3 3 Pro Django Alchin 4284 APress

Figure 3-2. Books table

This database can be easily accessed in a Django view function. We
need to pass a SELECT query to the execute() method of the cursor object

from the sqlite3 module.

54

CHAPTER 3 DJANGO ORM

Add a new function in the views.py module to fetch the records from
the Books table (refer to Listing 3-2). The resultset of the SELECT query is
rendered as the response to the client.

Listing 3-2. books view
import sqlite3

def books(request):
conn=sqlite3.connect("db.sqlite3")
cur=conn.cursor()
qry = "SELECT * FROM Books"
cur.execute(qry)
books=cur.fetchall()
return HttpResponse(str(books))

You also need to map this view to a URL route. This is done by
appending the following path() expression in the urlpatterns list of the
app. The new route is shown in bold letters in Listing 3-3.

Listing 3-3. Update urlpatterns

urlpatterns = [
path("", views.index, name="index"),
path("about/", views.about, name="about"),
path("books/", views.books, name="books"),

You may also provide another view to fetch a specific record whose id
is captured from the URL route as a path parameter.

In the views.py module, add a new book () view, as shown in
Listing 3-4. It has two arguments; one of course is the request object. The
second argument is id, which Django provides by parsing the mapped

55

CHAPTER 3 DJANGO ORM

URL route. The SQL query is a prepared statement that substitutes the
value of id received from the URL dispatcher in the SELECT statement. The
record returned by the fetchone() method of the cursor is rendered as the

response.

Listing 3-4. book view

def book(request, id):
conn=sqlite3.connect("db.sqlite3")
cur=conn.cursor()
qry = "SELECT * FROM Books WHERE id=?"
cur.execute(qry, (id,))
book=cur.fetchone()
return HttpResponse(str(book))

This time, the URL route to be mapped with this view has a trailing
integer path parameter. Update the urlpatterns list in the urls.py
module as shown:

urlpatterns = [
path("", views.index, name="index"),
path("about/", views.about, name="about"),
path("books/", views.books, name="books"),
path("book/<int:id>/", views.book, name="book"),

These two view functions fetch one or all the records from the
table. Likewise, the other CRUD operations can be implemented easily.

It basically involves passing an appropriate SQL query string to the
execute() method.

However, we shall not pursue this approach of handling databases with
the DB-API functionality any further. Instead, we shall find how Django’s
preferred method of employing Object-Relational Mapper (ORM) for the
database interaction works.

56

CHAPTER 3 DJANGO ORM

What Is ORM?

Working with the relational databases with the DB-API-compliant modules
has two issues. One of course, is that you as a Python developer should also be
proficient in the syntax and construction of various SQL queries. The second
issue is more about the programming paradigm mismatch between Python
and SQL. The nomenclature of type system in SQL is not at all similar to
Python. Apart from numeric and string types, other types have no equivalent
counterparts in Python. Python uses objects with attributes of different types.
SQL, on the other hand, doesn’t support object-oriented programming.

To elaborate this mismatch, consider the Python class definition in
Listing 3-5.

Listing 3-5. Books class

class Books:
def init (self, id, title, author, price, publisher):
self.id = id
self.title = title
self.author = author
self.price = price
self.publisher = publisher

Let there be an object of the Books class:
bl = Books(1, "Decoupled Django", "Gagliardi", 3874, "Apress")

To store this object in the Books table of the above SQLite database,
we need to unpack the attributes of this object need to be manually to
equivalent SQL types, and construct the SQL query string argument for the
execute() method.

cur.execute("INSERT INTO Books VALUES (?,?,?2,?2,2)",\
(b1.id, ba.title, bi.author, bi.price, bi.publisher))

57

CHAPTER 3 DJANGO ORM

On the other hand, when the execute() method is provided with a
SELECT query string, it returns a resultset. Each row in the resultset is a
dictionary of fields and their values. You will have to populate the Book
object by parsing the dictionary into the object’s attributes.

cur.execute("select * from Books WHERE author=?", ("
Gagliardi",))

row=cur.fetchone()

b1=Books(row['id'], row['title'], row['author'], row['price'l],
row['publisher'])

Such a manual conversion between Python object attributes and SQL
data types is extremely cumbersome. Moreover, things become messy
when you are required to modify the class attributes. Instead, if you could
work only with the objects and leave its interaction with the database to
some handler, things would become extremely convenient, scalable, and
easier to maintain. The Object-Relational Mappers are meant to perform
exactly this task.

As the name suggests, the ORM API maps the object attributes with
the structure of a table in a relational database. It may be noted that in the
theory of RDBMS, the table is called a relation. Each object corresponds to
arow in the mapped table, and each attribute of the object corresponds to
a column in the table structure. Figure 3-3 illustrates how the ORM acts as
an interface between a Python class and a database table.

58

CHAPTER 3 DJANGO ORM

Objects
1
Decoupled
Django
Class Gagliardi
Books
3874
(o]
" Apress Books Table
Title
D Title Author Price Publisher
Author \
- 2 - 1 Decoupled Gagliardi | 3874 Apress
ice Beginning Django
Publisher Diango > 2 Beginning Rubio 3053 Apress
Rubio Django
3053 3 Pro Django Alchin 4284 Apress

Apress

3

Pro Django

Alchin

4284

Apress

Figure 3-3. Object-Relational Mapper

There are a number of ORM libraries for Python that act as an object-
oriented abstraction layer on top of the DB-API modules. Django has its
own ORM, which is in fact used by the Django framework as a default for
interacting with SQLite and the other relational databases, such as MySQL,
PostgreSQL, etc. The other popular ORM libraries are SQLAlchemy,
SQLObject, Peewee, and more.

To add a database support to your Django application, you need to
undertake the following steps.

59

CHAPTER 3 DJANGO ORM

Define a Model

Define a class with its attributes matching with the desired structure of
atable in the relational database of your choice. In Django terminology,
such a class is called model and subclasses the Model class defined in the
django.db.models module. A Django app may have more than one model.
Their definitions are placed in the models.py module, which the startapp
command automatically creates inside the app folder.

You should find the models.py file, virtually empty, in the firstapp
package folder. Let us define a Book model (as in Listing 3-6) whose
attribute structure matches with the field structure of the Books table to be
created in the backend database.

Listing 3-6. Book model
from django.db import models
Create your models here.

class Book(models.Model):
id = models.IntegerField(primary key=True)
title = models.CharField(max_length=50)
author = models.CharField(max_length=50)
price = models.IntegerField()
publisher = models.CharField(max_length=50)

class Meta:
db_table = "books"

The Meta subclass is completely optional. It basically adds a certain
metadata of the model. Here, we are setting the db_table property. When
this model structure is translated to the table in the database, Django uses
this name. If not specified, Django uses the name of the model class itself
as the table name.

60

CHAPTER 3 DJANGO ORM

Note that each attribute is an object of one of the Field classes, defined
in the django.db.models module. We shall learn more about the field
types later.

Database Configuration

Choose the database for your Django project. The Django project set up
with the startproject command is configured to use the SQLite database
as the backend. You can find the DATABASES section in the settings.py
module of the project, as shown in Listing 3-7.

Listing 3-7. DATABASES settings

DATABASES = {
"default': {
"ENGINE': 'django.db.backends.sqlite3’,
"NAME': BASE DIR / 'db.sqlite3',

Django has built-in support for other databases like MySQL, Oracle,
and PostgreSQL in addition to SQLite. To choose any of these types, you
will need to set the respective backend database engine. For instance,
change the ENGINE property to 'django.db.backends.mysql' if you
intend to employ a MySQL database. You may have to provide additional
information about the hostname, port, username, password, etc., in the
database configuration settings. A typical database configuration for
MySQL database looks like the one shown in Listing 3-8.

61

CHAPTER 3 DJANGO ORM
Listing 3-8. MySQL settings

DATABASES = {
"default': {
"ENGINE': 'django.db.backends.mysql',
"NAME': 'mydatabase’,
'"USER': 'root',

"PASSWORD': "',
'"HOST': 'localhost',
"PORT': '3306',

For now, let us keep the database configuration to its default choice of
a SQLite database.

Next, we need to ensure that the Django app is added to the list of
INSTALLED_APPS in the settings.py file.

INSTALLED APPS = [
pre-installed apps,
"firstapp',

Run Migrations

We are now in a position to translate the model attribute structure to

the corresponding table structure in our designated SQLite database.
Django uses the mechanism of migration to propagate the models into the
database schema.

62

CHAPTER 3 DJANGO ORM

The migration-related commands are executed with the manage.py
script. Remember we had already run the migrate command? It was to
create the tables from the models in the pre-installed apps. For example,
we created a superuser and a normal user. These have been stored in the
auth_user table. Now that we have added a new app in the project, we
need to run the migrations again.

First step is to run the makemigrations command. That helps Django
detect if there have been new models added, or any existing models
modified.

(djenv) C:\workspace\firstproject>python manage.py
makemigrations
Migrations for 'firstapp':
firstapp\migrations\0001_initial.py
- Create model Book

Django has found out that a new model has been defined, and it
needs to be propagated. To view the SQL equivalent statements internally
executed while performing migrations, run the sqlmigrate command:

(djenv) C:\workspace\firstproject>python manage.py sqlmigrate
firstapp 0001
BEGIN;

-- Create model Book

CREATE TABLE "books" ("id" integer NOT NULL PRIMARY KEY,
"title" varchar(50) NOT NULL, "author" varchar(50) NOT NULL,
"price" integer NOT NULL, "publisher" varchar(50) NOT NULL);
COMMIT;

63

CHAPTER 3 DJANGO ORM

Finally, update the database schema by executing the above SQL query
by running the migrate command:

(djenv) C:\workspace\firstproject>python manage.py migrate
Operations to perform:
Apply all migrations: admin, auth, contenttypes, firstapp,
sessions
Running migrations:
Applying firstapp.0001_initial... OK

Register Model with Admin Site

Open the database with the SQLite viewer app to confirm if the Books table
has been created. However, you won't see the Books table on the Admin
site of your project. To be able to administer your model, you need to
register it with the admin site.

Open the admin. py module available in the app package folder. Import
the Book model, and register the same as in Listing 3-9.

Listing 3-9. admin.py
from django.contrib import admin

Register your models here.
from .models import Book

admin.site.register(Book)

Go to the Site administration page by logging in with the superuser
credentials. The Books model will now be visible as shown in Figure 3-4.

64

CHAPTER 3 DJANGO ORM

: @ [site administration | Djangosite: X | =
f

&« O (1) localhost:8000/admin/ A Oy CEC = |

Django administration

WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG QUT (P

Site administration

| AUTHENTICATION AND AUTHORIZATION

Groups + Add # Change
|
|
Users + Add Change
Books + Add # Change

Figure 3-4. Admin home page showing the Books model

Django Admin Shell

One of the very powerful but often underused features of the Django
framework is its ability to interactively access the models, the database,
and other components of a Django project from inside a Python shell.
When invoked, the Django admin shell imports the parameters and
settings of your current project, and you can handle its resources,
especially the models and the database, from the Python prompt.

To invoke the Django shell, run the manage. py script from the
command prompt:

(djenv) C:\workspace\firstproject>python manage.py shell

65

CHAPTER 3 DJANGO ORM

This opens a Python shell, with the settings of your project already
imported.

Python 3.12.0 (tags/v3.12.0:0fb18b0, Oct 2 2023, 13:03:39)
[MSC v.1935 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more
information.

(InteractiveConsole)

>>>

The Django shell provides easy access to the Object-Relational Mapper
(ORM) so that you can directly interact with the database and perform the
CRUD operations on the database by calling the corresponding methods
defined in the model class.

Add Objects

Let us start by importing the Book model (which we have defined in the
earlier section) in the Django shell.

>>> from firstapp.models import Book
Go ahead and declare an object of the Book class:

>>> b1l = Book(1, "Decoupled Django", "Gagliardi", 3874,
"Apress")

This object naturally resides in the memory. To save its data into the
table mapped with the table during the migration process, you need to
explicitly call its save () method.

>>> bil.save()

If you go back to the home page of the admin site, the Books model
(note that Django’s admin interface displays the plural form of the model
name), which was empty earlier, now shows the newly added Book object.

66

CHAPTER 3 DJANGO ORM

Instead of declaring an object and then calling its save() method, you
can use a convenience method, create(), available to the QuerySet class.
Let us add a couple of books with the help of the create() method.

>>> b2 = Book.objects.create(id=2, title="Beginning Django",
author="Rubio", price=3053, publisher="Apress")
>>> b3 = Book.objects.create(id=3, title="Pro Django",

author="Alchin", price=4284, publisher="Apress")

Retrieval

Ok, so we now have three objects in the Books model. How do we retrieve
them - something that the SQL SELECT query does? The Django model
class has a Manager attribute. Django adds a Manager with the name
objects to every Django model class.

>>> type(Book.objects)
<class 'django.db.models.manager.Manager'>

The all() method of the Manager class returns the QuerySet
consisting of all the objects in the model.

>>> Book.objects.all()
<QuerySet [<Book: Book object (1)>, <Book: Book object (2)>,
<Book: Book object (3)>]>

To fetch a single object (corresponding to a single row in the mapped
table), you may also use the get () method from the Manager class.

>>> Book.objects.get(id=2)
<Book: Book object (2)>

Note that the get () method must retrieve only a single instance. If
multiple records match the query specified within the get () method, this
will resultin a “MultipleObjectsReturned” error.

67

CHAPTER 3 DJANGO ORM

The QuerySet object is a list of objects. However, the above result is not
quite meaningful, as it hardly reveals anything about the attributes. Hence,
we shalladda __str () method (as in Listing 3-10) in the Book model.

Listing 3-10. Book model updated
from django.db import models
Create your models here.

class Book(models.Model):
id = models.IntegerField(primary key=True)
title = models.CharField(max_ length=50)
author = models.CharField(max_length=50)
price = models.IntegerField()
publisher = models.CharField(max_length=50)

class Meta:
db_table = "books"

def str (self):
return "Title : {} Author : {} Price : {}".format(self.
title, self.author, self.price)

Note thatthe _str () is Python’s magic method that returns a string
version of an object. Check the output of al1() method now:

>>> Book.objects.all()

<QuerySet [<Book: Title : Decoupled Django Author : Gagliardi
Price : 3874>, <Book: Title : Beginning Django Author : Rubio
Price : 3053>, <Book: Title : Pro Django Author : Alchin
Price : 4284>]>

68

CHAPTER 3 DJANGO ORM
Or you can even iterate through the QuerySet object:

>>> for i in Book.objects.all():
print(i)

Title : Decoupled Django Author : Gagliardi Price : 3874
Title : Beginning Django Author : Rubio Price : 3053
Title : Pro Django Author : Alchin Price : 4284

Search

We can perform a search for objects within the given model. Recall that
similar action is performed by SELECT FROM with the WHERE clause
query in SQL. The search criteria are specified as a filter() method of the
QuerySet.

This statement returns the book with ID=2.

>>> Book.objects.all().filter(id=2)
<QuerySet [<Book: Title : Beginning Django Author : Rubio Price
: 3053>]>

You can apply Field lookup operators as the parameters in the
filter() method. Some of the lookup criteria are

contains: Equivalent to LIKE in SQL
range: Equivalent to BETWEEN in SQL

gte (greater than or equal to): Equivalent to
>=1in SQL

Ite (less than or equal to): Equivalent to <= in SQL

69

CHAPTER 3 DJANGO ORM
Here are some example uses of these operators:

>>> Book.objects.all().filter(price gte=4000)

<QuerySet [<Book: Title : Pro Django Author : Alchin

Price : 4284>]>

>>> Book.objects.all().filter(price range=(3500, 4500))
<QuerySet [<Book: Title : Decoupled Django Author : Gagliardi
Price : 3874>, <Book: Title : Pro Django Author : Alchin
Price : 4284>]>

>>> Book.objects.all().filter(title_ contains="Django")
<QuerySet [<Book: Title : Decoupled Django Author : Gagliardi
Price : 3874>, <Book: Title : Beginning Django Author : Rubio
Price : 3053>, <Book: Title : Pro Django Author : Alchin
Price : 4284>]>

Updating the Objects

Django ORM makes modifying one or more attributes of one or more
objects in a model super easy. The object Manager provides an update()
method. The method accepts a variable number of keyword arguments,
each specifying the new value of an attribute. Under the hood, the
update() method executes the SQL UPDATE query

For example, you may want to change the name of the publisher in all
the records from Apress to Springer:

>>> Book.objects.all().update(publisher="Springer")
This is equivalent to the SQL UPDATE query as

UPDATE Books SET publisher="Springer"

70

CHAPTER 3 DJANGO ORM

Or increase the price of each book by 100. Here, we import the F()
function from the django.db.models module. It represents the value of a
given model field. Hence, F(‘price’) gives the value of the price field, which
we can use in an expression to compute the new price.

>>> from django.db.models import F
>>> Book.objects.all().update(price=F('price')+100)

Check the effect of these statements in the admin interface, a SQLite
viewer, or even by retrieving all() objects in the Django shell itself.

You can combine the filter() method along with update() to modify
the attributes of only those objects that satisfy the given criteria.

As an afterthought, you've decided to roll back the increase with
price>4000. Run the following statement for the purpose:

>>> Book.objects.filter(price gte=4000).
update(price=F('price')-100)

Finally, removing one or more objects (and, in turn, rows from the
table) is done with the delete() method. Understandably, you will always
call this method along with a filter, else all the records will be removed. You
can also use the get() method to delete a single instance.

As an example, we shall remove an object with ID=1:

>>> Book.objects.get(id=1).delete()

The Django admin shell thus gives a convenient access to the Django
ORM. It’s a very handy tool to test and debug database interactions without
the need to modify the Django project. We will in fact use all these CRUD
methods (add(), filter(), update(), etc.) programmatically inside
Django’s views throughout the subsequent chapters of this book.

71

CHAPTER 3 DJANGO ORM

Model Field Types

While a Django model is a regular Python class, the behavior of its
attributes is very unique. As mentioned above, it subclasses the Model
class in the django.db.models module. The fields are the most crucial part
of the model definition. An attribute in a model class is a class attribute
(an attribute outside any of the instance methods) and is an instance of

an appropriate Field class. In the example used here, the attributes title,
price, etc., are the instances of CharField and IntegerField. Django ORM
provides a number of other field types to choose from.

Here is the interesting (and intriguing) part. If title, author, price, etc.,
are the class attributes, how is it that each instance of Book class (each
book) has a different value title, author, or price, which is what an instance
attribute does?

Let us create a new Book object:

>>> id=4

>>> title = "A new Django Book"

>>> author = "Django Expert"

>>> price = 2000

>>> publisher = "Springer Nature"

>>> b1l = Book(id, title, author, price, publisher)

The parameters passed to the constructor are regular Python types -
the variables id and price are integers and title, author, and publisher
variables are of str type - and not the Field types of the class attributes. And
there is no explicit _init () constructor either that initializes instance
attributes like self.title. So what is happening here?

The Django ORM handles this paradox in a very peculiar manner. As
mentioned above, the class attributes of the model serve as the blueprint
of the table to be created when the migration is performed. When you
declare an instance of the model, Django stores the data in an internal

72

CHAPTER 3 DJANGO ORM

structure of its own and only maps this structure with the field structure
whenever you call the API methods such as create(), save(), update(),
ordelete().

That brings us to the various field types that Django ORM provides.
As per the Django documentation, there are more than two dozen field
classes, the subclasses of an abstract Field class. The field types, employed

in most use cases, are as follows.

CharField

Easily the most common type, normally used to store string attributes such
as name, title, etc. For fairly large sized text, you can use the TextField
type. Usually, an additional argument - max_length - is given to the
CharField constructor:

title = models.CharField(max_length=50)

While the value in the given CharField is a Python string, when
migrated to the database, the corresponding field becomes a VARCHAR or
equivalent data type supported by the corresponding database product.
The TextField attribute is mapped to SQL's TEXT field type.

IntegerField

The attributes intended to store integer values such as EmployeelD,
RollNo, etc., are defined to be of IntegerField type in a model.
BigIntegerField (64-bit integer), SmallIntegerField, AutoField, etc.,
are the other field types in the category. If you want to set a certain field
to be a primary key in the mapped table, you can pass a primary key
argument and set it to True.

id = models.IntegerField(primary key=True)

73

CHAPTER 3 DJANGO ORM

You can, of course, set any field as the primary key of the module. On
the database side, IntegerField is translated as INT, INTEGER, or any
such field type supported by the database you use.

FloatField

A float Python object, which is a floating-point number, can be stored in an
attribute of FloatField. Examples can be salary, price, etc.

salary = models.FloatField()

A FloatField is conveniently mapped to FLOAT or DOUBLE field
types in SQL.

BooleanField

This type of model attribute is also frequently employed, usually to store bool
type values (true or false). For example, you may want to provide an attribute -
isebook - to indicate whether a book is available in ebook format or not.

isebook = models.BooleanField()

Most of the RDBMS products (MySQL, PostgreSQL, etc.) have a
BOOLEAN field type, to which the BooleanField model attribute is
mapped against.

DateField

Python stores the date in the datetime.date object. The corresponding
model attribute in Django is DateField(). This attribute type is often
required in a model definition, for example, date of birth, date of
appointment, date of publication, etc.

publication date = models.DateField()

74

CHAPTER 3 DJANGO ORM

As you would expect, this type of model attribute is translated to the
DATE type of SQL, when migrated.

Apart from the above, there are several other Field types in Django. We
shall use them later, if and when required.

We can see that a certain ORM type represents a corresponding Python
data type. On the other hand, the ORM type is mapped to a corresponding
SQL type upon migration. Table 3-1 comes handy for understanding the
relation between Python types, ORM types, and SQL types.

Table 3-1. Django ORM types

Python Type ORM Type SQL Type

str CharField or TextField VARCHAR or TEXT

integer IntegerField, BigintegerField, AutoField INT, INTEGER, BIGINT
float FloatField, DecimalField FLOAT, DOUBLE, DECIMAL
bool BooleanField BOOLEAN

date, time DateField, DateTimeField DATE, TIMESTAMP

Types of Relationships

Let us have a brief recap of some of the key concepts of the RDBMS. In
arelational database, a relation is a table that represents an entity. The
attributes of the entity are the columns in the table, and each row is an
instance of the entity. One of the columns in a table is constrained to have
a unique value and is said to be the primary key of the table.

In Figure 3-5, the Products table is designed to have the ProductID
column as the primary key. Similarly, in another Customers table,
CustomerlID is its primary key.

75

CHAPTER 3 DJANGO ORM

Products Customers
) ProductID mz) CustomerlD
ProductName CustName

ProductPrice

Figure 3-5. Products and Customers tables with primary key

When the primary key of one table appears as one of the fields in
another table (which may have its own primary key), then it is called the
foreign key. The Invoices table shown in Figure 3-6 has CustomerID as a
field (or column) that refers to the CustomerID of the Customers table,
and hence, it is a foreign key. Similarly, the ProductID column in the
Invoices table is another foreign key as it refers to the primary key of the
Products table.

Products Invoices Customers

Kz ProductID I) InvoicelD i CustomeriD
ProdiictName InvoiceNo CustName
ProductPrice Date

i CustomerlD

R ProductID
Quantity \

Figure 3-6. Invoices table with foreign keys

76

CHAPTER 3 DJANGO ORM

Based on the foreign keys, the tables can be joined. We can fetch the
name of the customer of a given invoice number, retrieve the price of
the product purchased, and compute values like tax. The idea behind
designing related tables is to avoid data redundancy (unnecessary
repetition of same data in many rows) and ensure data integrity.

Imagine that instead of the unique productid in the Invoices table, a
longish name of product field is used; it will have to be entered every time
a customer buys it - and it may introduce some typo errors. Similarly, if a
product whose ID is referred to in the Invoices table is removed from the
Products table, the other details of the product such as its price will not be
available.

Relational databases have a mechanism to prevent the deletion of
primary key if it is being used in the related table, so that the data integrity
is intact.

Since the Django models are mapped to the corresponding tables in
the database, you can define such relationships between the two model
fields also. Three types of relationships exist:

e Onetoone
¢ One tomany

¢ Many to many

One-to-0ne Relationship

If, for each primary key in one model, there exists only one record in
the other related model, the two models are said to have a one-to-one
relationship.

Let us take an example of a college model and a principal model. A
college can have only one principal, and the other way round, one person
can be a principal of only one college.

77

CHAPTER 3 DJANGO ORM

The college model can be described as in Listing 3-11.

Listing 3-11. College model

class College(Model):
CollegeID = models.IntegerField(primary key = True)
name = models.CharField(max_length=50)
strength = models.IntegerField()
city=models.CharField(max_length=50)

While defining the Principal model, we need to provide the CollegeID
field as the foreign key to indicate the person with the given ID is the
principal of which college. To express this relationship, the foreign key
field must be of a special field type - OneToOneField. The first parameter
should be the table to which the foreign key refers to, and the second
option specifies what should happen in case the associated object in the
primary model is deleted. The on_delete option should be one of the
following values:

o CASCADE: Deletes the object containing the
ForeignKey.

e PROTECT: Prevents deletion of the referenced object

o RESTRICT: Prevents deletion of the referenced object
by raising RestrictedError

Let us defined the Principal model with the field structure as in

Listing 3-12.

Listing 3-12. Principal model

class Principal(models.Model):
id = models.IntegerField(primary key=True)
name = models.CharField(max_ length=50)
qualification = models.CharField(max_length=50)

78

CHAPTER 3 DJANGO ORM

CollegeID = models.OneToOneField(
College,
on_delete=models.CASCADE

)

One-to-Many Relationship

In a one-to-many relationship, one object of a model can be associated
with one or more objects of another model. A case in point is that of a
teacher qualified to teach a subject, but there may be more than one
teacher in a college who can teach the same subject.

The Subject model is as explained in Listing 3-13.

Listing 3-13. Subject model

class Subject(models.Model):
Subjectcode = models.IntegerField(primary key = True)
name = models.CharField(max_ length=30)
credits = models.IntegerField()

The Teacher model (Listing 3-14) has its own primary key. Its foreign
key - Subjectcode - establishes one-to-many relationship with the
Subject model.

Listing 3-14. Teacher model

class Teacher(models.Model):
TeacherID = models.IntegerField(primary key=True)
name = models.CharField(max_length=50)
qualification = models.CharField(max_length=50)
subjectcode=models.ForeignKey (
Subject,
on_delete=models.CASCADE

)

79

CHAPTER 3 DJANGO ORM

Many-to-Many Relationship

In a many-to-many relationship, multiple objects of one model can be
associated with multiple objects of another model.

Let us redefine the relationship between the subject and teacher
models in the above example. Assuming that the college has more than
one teacher who can teach the same subject, additionally, a teacher
can teach more than one subject as well. So there is a many-to-many
relationship between the two.

Django implements this with the ManyToManyField type. Let us use it
in defining the Subject model.

The Teacher model is straightforward (refer to Listing 3-15).

Listing 3-15. Teacher model updated

class Teacher(models.Model):
TeacherID = models.IntegerField(primary key=True)
name = models.EmailField(max_length=50)
qualification = models.CharField(max_length=50)

The design of the Subject model class (as in Listing 3-16) reflects the
many-to-many relationship.

Listing 3-16. Subject model updated

class Subject(models.Model):
Subjectcode = models.IntegerField(primary key = True)
name = models.CharField(max_length=30)
credits = models.IntegerField()
teacher = models.ManyToManyField(Teacher)

80

CHAPTER 3 DJANGO ORM

Let us migrate these models to construct corresponding tables in the
underlying SQLite database.

(djenv) C:\workspace\firstproject>python manage.py
makemigrations firstapp
Migrations for 'firstapp':
firstapp\migrations\0002_subject teacher.py

- Create model Subject

- Create model Teacher

To have a look at the SQL queries that will be indirectly executed by
Django ORM, run the sqlmigrate command:

(djenv) C:\workspace\firstproject>python manage.py sqlmigrate
firstapp 0002 _subject teacher
BEGIN;

-- Create model Subject

CREATE TABLE "firstapp_subject" ("Subjectcode" integer NOT NULL
PRIMARY KEY, "name" varchar(30) NOT NULL, "credits" integer

NOT NULL);

-- Create model Teacher

CREATE TABLE "firstapp_teacher" ("TeacherID" integer NOT NULL
PRIMARY KEY, "name" varchar(50) NOT NULL, "qualification"
varchar(50) NOT NULL);

-- Add field teacher to subject

81

CHAPTER 3 DJANGO ORM

CREATE TABLE "firstapp subject teacher" ("id" integer NOT

NULL PRIMARY KEY AUTOINCREMENT, "subject id" integer NOT

NULL REFERENCES "firstapp subject" ("Subjectcode") DEFERRABLE
INITIALLY DEFERRED, "teacher id" integer NOT NULL REFERENCES
"firstapp teacher" ("TeacherID") DEFERRABLE INITIALLY DEFERRED);
CREATE UNIQUE INDEX "firstapp subject teacher subject id_
teacher id abb3b881 uniq" ON "firstapp subject teacher"
("subject_id", "teacher id");

CREATE INDEX "firstapp subject teacher subject id 0oOacbeof" ON
"firstapp subject teacher" ("subject id");

CREATE INDEX "firstapp subject teacher teacher id 0d8af8b3" ON
"firstapp subject teacher" ("teacher id");

COMMIT;

Finally, run the migrate command.

(djenv) C:\workspace\firstproject>python manage.py migrate
Operations to perform:
Apply all migrations: admin, auth, contenttypes, firstapp,
sessions
Running migrations:
Applying firstapp.0002 subject teacher... OK

Thus, three new tables (firstapp_subject, firstapp_teacher, and
firstapp_subject_teacher) will be created in the SQLite database (db.
sqlite3) in the project root folder.

Summary

In this chapter, we have learned an important aspect of the Django
framework that is also at the center of the entire Django application,
namely, models. We started with Python’s DB-AP]I, discussed its

82

CHAPTER 3 DJANGO ORM

drawbacks, and explained the concept of ORM. We learned how to define
models and how to perform migrations. We also learned to perform CRUD
operations on the models from within the Django Shell.

In the end, we discussed the field types and the types of relationships
between the models. In the next chapter, we shall deal with the third
organ of Django’s MVT architecture - templates - and learn how to render
dynamic web pages by populating the templates with the data from
the models.

83

CHAPTER 4

Django Templates

The templates are the presentation layer of a Django web app. Django is a

data-driven web framework. Its elaborate templating mechanism makes it

very easy to merge the data from sources such as databases with the static

HTML to generate dynamic web pages.

This chapter takes a detailed look at the powerful features of Django’s

Template Language. Let us discuss the following topics in this chapter:

Template object
render() function
Template context
Template variables
Tags

Form templates
Class-based views
Generic views
Static assets

Template inheritance

© Malhar Lathkar 2025

M. Lathkar, Modern Django Web Development,

https://doi.org/10.1007/979-8-8688-1472-3_4

85

https://doi.org/10.1007/979-8-8688-1472-3_4#DOI

CHAPTER 4 DJANGO TEMPLATES

Template Object

The word “template” generally refers to a blueprint or a skeleton of

a certain product, with a fixed design interspersed with one or more
placeholders for inserting variable components. Many word-processing
and presentation software provide ready-to-use templates for quickly
preparing documents such as resumes, certificates, flyers, meeting agenda,
etc. To prepare a resume, for example, you can select a template of your
desired design. The layout, the headings, the fonts and colors, etc., are
pre-formatted with placeholders for the variable information. You just

fill up the required details such as name, address, experience, etc., in the
appropriate places provided in the template.

In the context of a web framework such as Django, a template is
essentially a web page, with its static HTML content intermittently
populated with template markups. Django uses its own templating system,
known by the name Django Template Language (DTL). It defines a set of
symbols and keywords that are used in a template web page. The template
engine - a tool that uses certain context data - reads the template code,
interprets the tags in it, and replaces them with the corresponding data
from the context provided.

Figure 4-1 depicts the functioning of a template engine.

86

CHAPTER 4 DJANGO TEMPLATES

Title Author Price oo
Decoupled Django | Gagliardi | 3874
— . . Title: {{ ttl }}

Beginning Django Rubio 3053 Author: {{ auth Y

Pro Django Alchin 4284 Price: {{ price }}

TEMPLATE ENGINE
Data Source Template
eee eeoe eeoe
Title: Decoupled Django Title: Beginning Django Title: Pro Django
Author: Gagliardi Author: Rubio Author: Alchin
Price: 3874 Price: 3053 Price: 4284

Figure 4-1. Template engine

The templating mechanism is controlled by certain parameters set
in the settings module (settings.py). The TEMPLATES section sets the
choice of template backend, the location of templates, etc.

Typically, the TEMPLATES section of the settings module of a Django
project created by the startproject command reads as in Listing 4-1.

Listing 4-1. Templates settings

TEMPLATES = [
{

"BACKEND': 'django.template.backends.django.

DjangoTemplates',

'DIRS': [BASE_DIR/'templates'],

"APP_DIRS': True,

"OPTIONS': {

"context_processors': [

'django.template.context processors.debug',
"django.template.context_processors.request’,

87

CHAPTER 4 DJANGO TEMPLATES

'django.contrib.auth.context processors.auth’,
"django.contrib.messages.context_processors.
messages ',
])
}J
})

By default, Django uses the Django Template Engine for template
processing. Its functionality is provided in the DjangoTemplates class. This
class is defined in the django.template.backends.django module. The
DIRS parameter is a list of directories where you will put your templates,
i.e., web pages. If you want Django to search for the templates in multiple
directories, put them in the order of preference. By default, it is an empty
list, but the convention is to use the templates directory under the BASE_
DIR, i.e., the parent project folder.

Django also lets you use the jinja2 template engine instead of its
default. If you wish to use it, set the BACKEND parameter to django.
template.backends.jinja2.Jinjaz2 class.

We know that any view function formulates an HttpResponse from a
Python string that may have various HTML tags, to be returned to the user,
as in the index() function (Listing 4-2).

Listing 4-2. index view
from django.http import HttpResponse

def index(request):
return HttpResponse("<h2>Hello, World.</h2>")

If we want to render the Hello message that contains a name passed as
an argument to the view function (such as Hello John), we can use any of
Python’s string substitution methods (such as the f-string, or the format()
function) to insert the name argument and then return the response.

Add a user() view function as in Listing 4-3:

88

CHAPTER 4 DJANGO TEMPLATES

Listing 4-3. user view with parameter

def user(request, name):
return HttpResponse(f"<h2>Hello, {name}.</h2>")

Even if the response is completely static, passing a lengthy string that
represents a hard-coded HTML string as the view response is not feasible.
Ideally, we would like a separately constructed web page to be used by the
view function to formulate its response. The Template object performs
precisely this task.

Django loads the given web page by invoking the get template()
method of the django.template.loader class to obtain the
Template object.

template=loader.get template("index.html")

Here, index.html is a simple Hello World web page, situated in the
BASE_DIR/templates folder. If required, this object is manipulated to
insert a certain context data (we shall discuss this aspect in the next
section). The render () method of the Template object returns a string
with the context data substituted at the appropriate placeholders in the
HTML script.

string = template.render(context, request)

Currently we don’t have any placeholders in index.html, nor do we
have any context to be filled. The view function (Listing 4-4) then passes it

as its response.

Listing 4-4. Rendering template

def index(request):
template=loader.get template("index.html")
context = {}
return HttpResponse(template.render(context, request))

89

CHAPTER 4 DJANGO TEMPLATES

render() Function

A collection of various convenience functions, defined in the django.
shortcuts module, includes a render() function that really is a shortcut

for rendering a template. Instead of loading the template, inserting

context data in the DTL markups inside the HTML, and returning the
HttpResponse, using the render () function is the all-in-one alternative
You need to pass an HTTP request object and the template web page as the
mandatory arguments.

render (request, template page)

Let us change the index() view function as shown in Listing 4-5.

Listing 4-5. render() function
from django.shortcuts import render

def index(request):
return render(request, 'index.html')

Optionally, you can pass the context data as a Python dictionary object,
the content_type of the response (which is text/html by default), and the
status code to the render () function.

Template Context

As mentioned earlier, the Django Template Language substitutes variable
data at the appropriately marked placeholders inside the HTML script.

So it is much like the f-string processing in Python, where a variable
surrounded by the curly brackets is substituted by its value. The only
difference is you have to use double curly brackets to mark a template
variable. Hence, in our index.html template page (refer to Listing 4-6), put
{{ name }} to insert the name argument at the runtime.

90

CHAPTER 4 DJANGO TEMPLATES
Listing 4-6. Template web page

<html>
<body>
<h2>Hello, {{ name }}.</h2>
</body>
</html>

The values to be substituted in all the template variables in the HTML
script come from the Context object that you need to pass to the render ()
function. Django builds the Context object from a Python dictionary,
with its keys corresponding to the template variable names. The template
engine, during the processing of the template, fills the place of the variable
with the corresponding value in the dictionary. So the call to the render ()
function will be

render(request, template, context)

We have already defined a user() view function that takes name
as a path parameter. So start the server and go to the URL http://
localhost:8000/firstapp/user/John. The browser should now show a Hello
John message.

The context argument for the render () function is a dictionary, with
each key being the template variable. The name of the template variable
follows the usual convention - having alphabets, digits, or an underscore.
The template variable may also have a dot character.

Its value may be a singular Python object (string, or a numeric), a list, a
dict, or even an object of any Python class.

We can use the index to access a specific element. If the context
object is

context = {"subjects": ["Phy", "Che", "Maths"]}

91

CHAPTER 4 DJANGO TEMPLATES

then to render the Oth element in the template, use

{{ subjects[o] }}

Ifitis a dictionary as
context = {"subjects": {"Phy": 60, "Che":70, "Maths":80}}

the template variable to be used to display the marks of “Phy” subject
should be

{{ subjects["Phy"] }}

The dot (.) operator is used in the name of a template variable as a
lookup for a certain attribute of an object. Let us say we pass a Teacher
object as the context:

context = { "teacher": Teacher(id = 1, name = "Anand Bose",
subject = "Data Science", qualification = "ME, Ph.D")}

in which case, to show the name of the teacher in the template output,
the name of the template variable should be

{{ teacher.name }}

Template Tags

The Django Template Language lets you do a lot more than just outputting
the context data in the response. It provides various tags that add enhanced
processing of the context, such as conditional formatting, iterating over
a collection, etc. The tags related to template inheritance are extremely
important in ensuring that the pages have a uniform look and feel. We shall
discuss the concept of template inheritance in the next chapter.

The template tags are put inside the symbols {% and %}:

{% tag <additional parameters> %}

92

CHAPTER 4 DJANGO TEMPLATES

{% if %} Tag

To incorporate conditional processing inside the template, DTL has {% if
%}, {% elif %}, {% else %}, and {% endif %} tags.

Just like the if statement in Python, the {% if %} tag evaluates a variable,
and if it is “true’; the contents of the subsequent block are output. Each {%
if %} tag must have a closing {% endif %} tag. In between, there may be one
or more {% elif %} tags and an {% else %} tag.

{% var1 %}
Expressioni
{% elif var2 %}
Expression2
{% else %}
Expression3
{% endif %}

Let us put the {% if %} tag to some realistic use. Earlier, we had defined
the Book model. Let us add a new Boolean field - ebook (as in Listing 4-7) -
to indicate whether the book is available in ebook format or not. The newly
added field is shown in boldface.

Listing 4-7. Book model - modified

class Book(models.Model):
id = models.IntegerField(primary key=True)
title = models.CharField(max_length=50)
author = models.CharField(max_length=50)
price = models.IntegerField()
publisher = models.CharField(max_length=50)
ebook = models.BooleanField(default=True)

93

CHAPTER 4 DJANGO TEMPLATES

The default value of this field as True means that all the books are
available in ebook format. As we have modified the model, we need to go
through the process of migration as below:

python manage.py makemigrations firstapp
python manage.py migrate

Out of the book objects in the model, let us update the book with ID=2
and set its ebook attribute to False, indicating that it is not available in
ebook format.

python manage.py shell

>>> from firstapp.models import Book
>>> b1l = Book.objects.get(id=2)

>>> bil.ebook=False

>>> bi.save()

Next, let us define a book () view as in Listing 4-8, that retrieves a Book
object with the given ID as the path parameter and pass it as the context to
a book.html template.

Listing 4-8. book view

def book(request, id):
book = Book.objects.get(id=id)
context = {'book"' : book}
return render(request, 'book.html', context)

The book.html (Listing 4-9) template simply outputs the attributes of
the retrieved book, such as the title, author, etc. Additionally, it checks if
the ebook attribute is True or False and renders a conditional response.

94

CHAPTER 4 DJANGO TEMPLATES

Listing 4-9. book.html

<html>
<body>

<h2 style = "text-align: center;">Title: {{ book.

title }}</h2>

</body>
</html>

<p>ID: {{ book.id }}</p>
<p>Author: {{ book.author }}</p>
<p>Price: {{ book.price}}</p>
<p>Publisher: {{ book.

publisher }}</p>

{% if book.ebook %}

<p>Available as Ebook?: Yes</p>
{% else %}

<p>Available as Ebook?: No</p>
{% endif %}

<hr>

To wire up the book () view with the route that passes the ID parameter,
add this path to the urlpatterns in the app’s URLCONE

path("book/<int:id>/", views.book, name="book"),

With these steps completed, start the server, and check the browser

display (Figure 4-2) for “book/2” endpoint.

95

CHAPTER 4 DJANGO TEMPLATES

; = O ®
g‘ @ [localhost:8000/firstapp/book/2/ x = =
&« C’ Q (M) localhost:8000/firstapn/book/2 AN =
Title: Beginning Django
ID: 2

Author: Rubio
Price: 3053
Publisher: Apress

Available as Ebook?: No

Figure 4-2. {% if %} tag

Try and check the same for any other book that has its ebook attribute

as True.

{% for %} Tag

The for tag is employed in a template when the context variable is a
collection of objects and you want to iterate over the collection. The syntax
of Django’s for template tag is similar to the for statement in Python,
except that every {% for %} must have a corresponding {% endfor %} tag.

{% for object in collection %}

{{ object }}
{% endfor %}

Unlike Python, the DTL doesn’t use uniform indents to mark a block.
Hence, the endfor tag marks the end of the for loop. Same thing applies to
the use of {% endif %} with each {% if %}. There may be one or more HTML
expressions or other template tags in between. For example, you may want
to use the {% if %} . . . {% endif %} construct inside the for loop.

96

CHAPTER 4 DJANGO TEMPLATES

The following view function sends a list as the context to a given
template:

def langs(request):
context = {"langs” : ["Python”, "Java", "C++"]}
return render(request, 'template.html', context)

We employ a {% for %} . . {% endfor %} pair of tags in the template code
(Listing 4-10) to display the list of languages as the response.

Listing 4-10. for - endfor tag

{% for lang in langs %}
<1i>{{ lang }}</1li>
{% endfor %}

Django outputs the list when the browser is pointed to the URL route
list/ (it needs to be mapped to the langs () view in the urls.py module as
discussed earlier).

¢ Python
e Java
o C++

Let us use the {% for %} tag to display the list of books. Add the books ()
view. It passes the collection of Book objects to the list_books.html
template (Listing 4-11).

97

CHAPTER 4 DJANGO TEMPLATES

Listing 4-11. books view

from django.shortcuts import render
from .models import Book
def books(request):
books = Book.objects.all()
context = {'books': books}
return render(request, 'list books.html®, context)

The {% for %} tag in Listing 4-12 processes a Book object at a time and

renders its attributes in one iteration.

Listing 4-12. list_books.html

<html>
<body>
<h2 style = "text-align: center;">List of Books</h2>

{% for book in books %}
<p>Title: {{ book.title }}</p>
<p>Author: {{ book.author }}</p>
<p>Price: {{ book.price}}</p>
<p>Publisher: {{ book.
publisher }}</p>
<hr>
{% endfor %}
</html>

You need to map the books () view to the “books/” route by appending
anew path to the urlpatterns list.

path("books/", views.books, name="books"),

98

CHAPTER 4 DJANGO TEMPLATES

The URL http://localhost:8000/firstapp/books/ now displays the list of
books as shown in Figure 4-3.

4
<

©
C

i
Q

localhost:8000/firstapp/books/

x

-+

() localhost:2000/firstapp/books/

Title: Decoupled Django
Author: Gagliardi
Price: 3874

Publisher: Apress

Title: Beginning Django
Author: Rubio
Price: 3053

Publisher: Apress

Title: Pro Django
Author: Alchin
Price: 4284

Publisher: Apress

List of Books

Figure 4-3. Using loop in template

Out of the various other template tags in DTL, we shall discuss the
{% block %} and {% extends %} tags when we discuss the “Template
Inheritance” section.

99

CHAPTER 4 DJANGO TEMPLATES

Form Templates

The view functions defined so far in this chapter are invoked when the
user visits their corresponding URL routes with the HTTP GET request,
which retrieves one or more resources from the server. The books () view
retrieves a list of books, and the book () view retrieves a book whose ID
matches with the ID parameter it parses from the URL. To add a new
resource (in this case, a new book) or to update any existing resource, we
need to send a POST request, along with the data to add or update.

An HTML form collects the data from the user in appropriate input
elements (such as text box, radio buttons, drop-downs, etc.) and sends it
to a function on the server that parses the request data and uses it to add/
update a book.

Django offers a robust form rendering API that makes it very
convenient to construct a form with elements matching with the types of
fields in the model definition and validate the data entered by the user
before performing any action such as adding a new object or updating an
existing object.

HTML Form

Let us start by designing a simple HTML form that accepts inputs for the
fields in the Book model that we have already defined. As mentioned
above, the method attribute of the form should be set to POST. When
submitted, the form data is sent to a view function addbook (), which is the
action attribute of the form. We have four text input elements for the fields
in the Book model (title, author, price, and publisher). The HTML script
below is saved as bookform.html (Listing 4-13) in the templates folder.

100

CHAPTER 4 DJANGO TEMPLATES

Listing 4-13. bookform.html

<form action="/firstapp/addbook/" method="post">
{% csrf token %}
<p><label for="ttl">Title: </label>
<input id="ttl" type="text" name="title"></p>
<p><label for="auth">Author's name: </label>
<input id="auth" type="text" name="author"></p>
<p><label for="price">Price: </label>
<input id="price" type="text" name="price"></p>
<p><label for="pub">Publisher: </label>
<input id="pub" type="text" name="publisher"></p>
<input type="submit" value="OK">

</form>

Note the use of the {% csrf_token %} tag inside the <form> ..
</form> code. This tag is Django’s mechanism against the CSRF
attacks.

CSRF is an acronym for Cross-Site Request Forgery. It is the most
common type of security attack on a website. The attacker utilizes
this type of vulnerability and forces the user (even if they have an
authenticated access) to perform certain actions that eventually turn
out to be harmful for them.

Django installs a middleware called CsriViewMiddleware (this can be
found in the lists of installed MIDDLEWARE in the settings module). It
provides a handy solution to prevent CSRF attacks.

When a user visits the Django application, it generates a token and
stores it as a cookie in the client’s machine. The {% csrf_token %)}
tag in the HTML form code renders a hidden field with the name
“csrfmiddlewaretoken”.

101

CHAPTER 4 DJANGO TEMPLATES

<input type="hidden" name="csrfmiddlewaretoken"
value="S9tIMDKsbtbhbKhmr1BXs07k2znSPIQkvkq
fH4IqVre5mOdSfUuAyEYbtlzetnkz">

As the user submits the form, the server checks if it has this token
field and its value is the same as the cookie value. If it doesn’t match,
the further processing of the form is terminated, thereby avoiding any
unwanted action.

The above HTML form is really a static template, without any variable
component. To render this form, add a view function - getbook() - in the
views.py module (as in Listing 4-14).

Listing 4-14. getbook view

def getbook(request):
context={}
return render(request, "bookform.html", context)

Make sure that this view is mapped to a URL route by updating the
urlpatterns list in the urls.py module:

path("getbook/", views.getbook, name="getbook"),

You will get a basic HTML form rendered on your browser (Figure 4-4).

102

CHAPTER 4 DJANGO TEMPLATES

4 @ [localhost:8000/firstapp/getbook/ x | = - 9 x
« =2 O Q 1) localhost:8000/firstapp/getbook Al] A C |
Title: |

Author's name:
Price:
Publisher: |

[oK

Figure 4-4. HTML form

Form Class

The HTML form as above works well, especially in relatively simpler cases
(we can improve its design by applying appropriate CSS styles). For more
complex situations though, especially where the models are related
(one-to-one or one-to-many) and for models with fields of more advanced
type, the form design becomes difficult. We also need to validate the data
before processing. The modern HTMLS5 form fields do present certain basic
client-side validations; form handling of a certain higher level is required.
The Form class (defined in the django.forms module) and various types
of form fields provide an effective form design and validation mechanism.
Define a subclass of django.forms.Form class. Its object renders
an HTML form. The class attributes of the Form class are the objects
of appropriate form field classes, all inherited from the django.forms.
fields.Field class. The form field types are very much similar to the
model field types. For example, the forms.CharField corresponds to the
models.CharField, whereas the forms.BooleanField corresponds to the
models.BooleanField.

103

CHAPTER 4 DJANGO TEMPLATES

The properties of a certain form field are determined by one or more of
the following attributes:

required: A Boolean parameter indicating if a value
to this field is needed. If true, and the field is empty,
it raises the validation error with the ‘This field is
required. Message.

label: A text to be associated when the field is
rendered.

initial: You can specify the initial value to use when
rendering this field.

widget: Each field uses a default HTML element

when it is rendered. For example, a CharField is

rendered as a text input element. However, if you

wish to provide a TextArea element, use the widget

property.

So let us declare a BookForm class and define the form fields that reflect

the Book model. Add the script (as in Listing 4-15) in the forms.py module
in the app package folder.

Listing 4-15. forms.py
from django import forms

class BookForm(forms.Form):
title = forms.CharField(label="Title ", max_length=50)
author = forms.CharField(label="Author ', max_length=50)
price = forms.IntegerField(label='Price ")
publisher = forms.CharField(label = 'Publisher ',
max_length=50)
ebook = forms.BooleanField(initial=True)

104

CHAPTER 4 DJANGO TEMPLATES

The getbook() view (refer Listing 4-16) passes an object of this form as
a context to the bookform.html template.

Listing 4-16. getbook view with Form object

def getbook(request):
form = BookForm()
context={"'form"' : form}
return render(request, "bookform.html", context)

In the previous example, the bookform.html script rendered the hard-
coded HTML form elements. Instead, we now want the Django form to be
rendered.

The Django Template Language renders each form field attribute as its
associated HTML widget. For example, the title attribute

title = forms.CharField(label="Title ", max_length=50)
is rendered on the browser as

<label for="id title">Title:</label>
<input type="text" name="title" maxlength="50" required
id="id _title">

However, Django outputs the field elements in one of the following

predefined outputting styles:

{{ form.as_div }}: Renders the form as a series
of <div> elements, with each <div> containing

one field.

{{ form.as_p }}: Renders the form as a series of <p>
tags, with each <p> containing one field.

105

CHAPTER 4 DJANGO TEMPLATES

{{ form.as_ul }}: Renders the form as a series of
tags, each containing one field. It does not include
the and tags surrounding a sequence of

 .. tags.

{{ form.as_table }}: Renders the form as an HTML
table, with each field and its label in one row. Again,
the enclosing <table> and </table> tags are not
included, you need to explicitly provide them in the
template code.

Moreover, Django does not include the <form> and </form> tags or
an <input type="submit”> tag too. You have to include them too in the
template code.

So let us modify the bookform.html (Listing 4-17) template that renders
the form in the form of an HTML table.

Listing 4-17. bookform.html - rendering form as a table

<form action="/firstapp/addbook/" method="post">
{% csrf token %}

<table>

{{ form.as_table }}

</table>

<input type="submit" value="0K">
</form>

The user is presented with a tabular layout of all the fields as in
Figure 4-5.

106

CHAPTER 4 DJANGO TEMPLATES

4 @ [localhost:8000/firstapp/getbook/ x | = - 9 x
« 2> O Q 1) localhost:8000/firstapp/getbook/ AY 9y UG |
Title :
Author :
Price :
Publisher :
Ebook:
[oK |

Figure 4-5. The Form class

When a user fills the data and submits the form, the browser is directed
to the “addbook/” route. Let us first wire this URL route to the addbook ()
view. Update the app’s urlpatterns list by adding a new path:

path("addbook/", views.addbook, name="addbook"),

What does the addbook () function (refer to Listing 4-18) do?

First, it checks if the request method is POST. If yes, the form instance
is populated with the form data (available in the request.POST dict
object).

To validate the form, callits is_valid() method. Django applies all
the built-in validations with the fields and returns True if it passes the
validation.

If the form is found to be valid, extract the validated values of each
field. The cleaned_data attribute of the form returns a dictionary of the
clean values.

Instantiate an object of the Book model, and call its save () method.

Add the function shown in Listing 4-18 in the views.py module.

107

CHAPTER 4 DJANGO TEMPLATES

Listing 4-18. addbook view with POST request

def addbook(request):
if request.method == 'POST':
form = BookForm(request.POST)
if form.is valid():
data = form.cleaned data
ttl = data["title"]
auth = data["author"]

pr = data["price"]
pu = data["publisher"]
bl = Book(title=ttl, author=auth, price=pr,
publisher=pu)
b1.save()
return HttpResponse("<h2>Book added successful-
1y</h2>")
ModelForm

The django.forms module also includes a handy Mode1Form class that pro-
vides a simpler and even more convenient approach to rendering a form
based on the given model’s field structure. Instead of manually defining
the field attributes that match with the model’s structure, you just have to
set the model attribute. Django automatically generates the form fields that
match with the type of model attributes. With the fields attribute, you can
also specify which fields do you want to accept the user inputs for. Setting

fields = "_all "

populates the form with all the fields. You can also specify only those
fields you require in the form

fields = ["f1", "f2",..]

108

CHAPTER 4 DJANGO TEMPLATES

or exclude one or more fields from the list:
exclude = ["f1", "f2",..]

Listing 4-19 shows our BookForm class based on the ModelForm class.

Listing 4-19. ModelForm class

from django import forms
from .models import Book
class BookForm(forms.ModelForm):
class Meta:
model = Book
fields = " all "

We don’t need to change our bookform.html template, or the getbook()
view. The addbook () view becomes even simpler, as in Listing 4-20. After
performing the validation, the form data is automatically mapped to a model
object; just call the save() method of the form to save the object itself.

Listing 4-20. addbook view to save the ModelForm

def addbook(request):
if request.method == 'POST':
form = BookForm(request.POST)
if form.is valid():
form.save()
return HttpResponse("<h2>Book added
successfully</h2>")

Finally, we need a form to let the user change values of one or more
fields of an object. While it should be similar to the bookform generated
by the ModelForm class, we don’t want the input elements to be empty.
Instead, they should be populated by the existing values of the object to be
updated.

109

CHAPTER 4 DJANGO TEMPLATES

This can be done by specifying the instance attribute in the constructor

of the ModelForm class. Let us say we wish to update the details of a book
written by a certain author, and we would pass the name of the author as
a path parameter to the getbook () function. So the getbook () function
should have the signature as

getbook(request, author)

Now the URL that will invoke this view will have to be like “getbook/
xyz”. Hence, this requires a change in the URL mapping. Modify the urls.
py module and add a string path parameter to the URL pattern.

path("getbook/<author>", views.getbook, name="getbook"),

The getbook () view accepts the author parameter from the
URL. Inside the function, we need to locate the object with the given
author. This object is then set as the instance property for the ModelForm

constructor:

bl = Book.objects.get(author=author)
form = BookForm(instance=b1)

Accordingly, change the code for the getbook () view function in the
views.py module as in Listing 4-21.

Listing 4-21. getbook view showing pre-populated ModelForm
from .forms import BookForm

def getbook(request, author):
bl = Book.objects.get(author=author)
form = BookForm(instance=b1)
context={"'form"' : form}
return render(request, "bookform.html", context)

110

CHAPTER 4 DJANGO TEMPLATES

Rest of the things being the same, start the Django server, and visit
the “getbook/Rubio” URL route to see that the form (as in Figure 4-6) is
populated with the corresponding object.

g f’g ['j localhost:8000/firstapp/getbook. X + - B :
& G Q (D) localhost:8000/firstapp/getbook/Rubio AN R |

Title: "Beginning Django
Author: |Rubio

Price: |3053
Publisher: |Apress
Ebook:
| OK |

Figure 4-6. ModelForm populated with object

You can now change any of the fields and submit the form. The
addbook() function, as explained before, will update the current object.

Class-Based View

Using Python functions in Django’s View layer is an established practice
right from its early versions. In 2008, Django introduced the feature of
class-based views. A view class, inherited from the django.views.View
class, offers better control and flexibility compared to the traditional
function-based views. A class-based view provides the advantages like
better organization and code reusability.

One of the difficulties with the approach of using Python functions as
views is that you either have to write different functions for handling each
type of HTTP request (GET, POST, etc.) or use conditional branching code
inside a single view function.

111

CHAPTER 4 DJANGO TEMPLATES

The View subclass, on the other hand, allows you to define separate
methods for each type of request inside it. You don’t have to provide a
separate route for handling each type of request. All you need to do is to
define a get() method to handle a GET request and a post () method in
the same class that responds to the POST request.

The view function in Listing 4-22 does conditional processing of a GET
or POST request.

Listing 4-22. Function-based view with conditional request
handling

def myfunction(request):
if request.method=="GET":
#view logic to handle GET request
return HttpResponse("response to GET request")

if request.method=="POST":
#view logic to handle POST request
return HttpResponse("response to POST request")

In the new class-based view approach (Listing 4-23), the view class has
separate methods for each request.

Listing 4-23. View class example

from django.views import View
class MyView(View):
def get(self, request):
#view logic to handle GET request
return HttpResponse("response to GET request")

def post(self, request):
#iview logic to handle POST request
return HttpResponse("response to POST request")

112

CHAPTER 4 DJANGO TEMPLATES

However, Django’s URL resolver sends the request and path
parameters to a callable function, not a class. To get around this, the View
class has an as_view() class method that returns a method corresponding
to the request type. Hence, we need to map the URL with the class.as_
view() parameter in the path() function to build the urlpatterns list.

path("myview/",MyView.as view(), name="myview")

Let us elaborate on this usage further. The MyView class defines a get()
method that renders a template that contains a simple HTML form with an
input element as name and posts it back and a post() method that retrieves
the name entered by the user.

Listing 4-24 shows the mytemplate.html web page.

Listing 4-24. mytemplate.html

<html>
<body>
<form action="" method="POST">
{% csrf token %}
<p><label for="nm">Name: </label>
<input id="nm" type="text" name="name"></p>
<input type="submit" value="OK">
</form>
</body>
</html>

and, the View class (refer Listing 4-25):

Listing 4-25. MyView class

class MyView(View):
def get(self, request):
return render(request, "mytemplate.html”, {})

113

CHAPTER 4 DJANGO TEMPLATES

def post(self, request):
name=request.POST['name"]
return HttpResponse(name)

The name/ URL route is defined in the urlpatterns list with
path("name/",MyView.as view(), name="name"

You can easily implement the form handling mechanism with the view
class by adopting a similar approach that we used in the preceding section.

Generic Views

The introduction of class-based views is seen as a robust alternative to the
function-based views. To make the web development, especially the task
of writing the view logic, even simpler, various special-purpose generic
view classes have been designed. These views are targeted toward a spe-
cific type of view logic. For example, the TemplateView class is specially
designed to make the template rendering virtually a one-statement code.
All the generic views have to be used as the base class, and you need to
subclass the appropriate generic view. There are generic display classes,
generic classes that help in performing CRUD operations, etc.

Let us learn about some of the frequently used generic views.

TemplateView

Of all the generic views, the TemplateView is the simplest. It renders the
given template, optionally populating it with the context data collected lo-
cally or from the URL parameters. The TemplateView class is defined in the
django.views.generic.base module. You need to subclass it and set its
template_name attribute

114

CHAPTER 4 DJANGO TEMPLATES

from django.views.generic.base import TemplateView
class IndexView(TemplateView):
template name = "index.html"

Make sure that the above view class is properly mapped to a URL in the
app’s URLCONE.

path("", IndexView.as view(), name="index"),

The index.htmlis a simple Hello World script, without any variables.
If, however, it does have to render a variable, the template uses the
context returned by the get_context data() method in the class (refer
to Listing 4-26). Let us override this method in the above class and pass a
template variable “name” to index.html.

Listing 4-26. TemplateView class

class IndexView(TemplateView):
template name = "index.html"

def get context data(self, **kwargs):
context = {"name" : 'John'}
return context

Edit the index.html script (Listing 4-27) to include the template
variable in the Hello message.

Listing 4-27. index.html for TemplateView

<html>
<body>
<h2> Hello {{ name }}</h2>
</body>
</html>

115

CHAPTER 4 DJANGO TEMPLATES

We might want to pass the name as a path parameter in the URL. That
is done by changing the URL mapping in the urls.py module, as
done below:

path("<name>", IndexView.as view(), name="index"),

Instead of assigning some hard-coded value to the context variable, let
us read it from the keyword arguments (Listing 4-28).

Listing 4-28. TemplateView with kwargs

from django.views.generic.base import TemplateView
class IndexView(TemplateView):
template name = "index.html"

def get context data(self, **kwargs):
context = {"name" : self.kwargs['name']}
return context

One should use the TemplateView especially to render templates with
a certain static content or having very little context. For more complex
requirements, such as rendering a form that collects the data for creating a
new object, or updating it, Django provides other special-purpose generic
views such as CreateView, UpdateVieuw, etc.

CreateView

As the name suggests, this generic view provides an easier alternative to
create a new object, as compared to the function-based view that we used
earlier in this chapter. We created a ModelForm, rendered it as an HTML
form with a POST method with a template, and saved the form data as an
object after validation. This entire process is performed in a very concise
manner by the subclass of CreateView.

116

CHAPTER 4 DJANGO TEMPLATES

The two mandatory attributes to be defined are the name of the

model (we'll use the Book model) and the list of fields to be rendered on

the form. By default, Django builds a model form with the name of the
model, followed by _form as a suffix. In our case, it will be book_form.

You can change the suffix if you want, or set the template_name property

to a specific form template, instead of the default. Listing 4-29 includes the

CreateView subclass that renders the ModelForm template.

Listing 4-29. CreateView

from django.views.generic import CreateView
class BookCreateView(CreateView):

model = Book

fields = " all "

template name = 'book create form.html'
success url = '../books/"

The success_url attribute is the URL route to which the browser is
redirected after successfully creating a new object.

Since we have defined the template name, you need to provide the
same, much like the ModelForm template (Listing 4-30), except that the
form is posted to the same URL as the one that renders the form.

Listing 4-30. ModelForm template for CreateView

<html>
<body>
<form method="post">
{% csrf_token %}
<table>
{{ form.as _table }}
</table>

117

CHAPTER 4 DJANGO TEMPLATES

<input type="submit" value="OK">
</form>
</body>
</html>

As one would imagine, the BookCreateView class has to be mapped to
a URL route in the URLCONF of the app by updating the urlpatterns list:

from firstapp.views import BookCreateView
urlpatterns += [path("newbook/", BookCreateView.as view(),
name="newbook")]

A visit to the “newbook/” URL displays the entry form. When the user
submits the same with valid data entered in it, the browser is directed
to the view that displays a list of all the books, including the newly
added book.

UpdateView

This is one of the generic view classes that allows you to update the con-
tents of an existing object. Django selects the object to be updated, based
on its primary key, or a slug field. To pass the primary key of the object,
add the following URL route in the urls.py module:

urlpatterns += [path("update/<int:pk>", BookUpdateView.as
view(), name="update")]

As in the case of the CreateView, you need to set the model property
(Book model in our case) and the list of fields to appear in the update form
template. In the example below, the UpdateView subclass uses the same
template that we used earlier, with the CreateView code. An HTML form,
pre-populated with the values of an object corresponding to the primary
key passed from the URL, will appear.

118

CHAPTER 4 DJANGO TEMPLATES

In Listing 4-31, the success_url attribute is set to “../books/” so
that after the object is updated, the list of books appears, showing the

modifications done.

Listing 4-31. UpdateView

from django.views.generic.edit import UpdateView
class BookUpdateView(UpdateView):

model = Book

fields = ' all '

template name = "book create form.html"
success url = "../books/"

The “update/2” URL route shall display the details of the
corresponding objects, giving an opportunity to change the values.
Submitting the form runs the UPDATE query in the background and
returns to the page showing the list of books.

DeleteView

The DeleteView class is another generic base view. As the name implies,
its purpose is to delete a given object from the model. The selection of an
object for deletion is based on its primary key or a slug, as in the case of the
UpdateView. Additionally, Django lets you select the object to be deleted by
overriding the get_object() method.

Sometimes, using the primary key for the purpose of deleting objects
may not be convenient, especially when the primary key doesn’t exactly
tell you the serial number of the object in the collection. Instead, we would
like to identify the object with another attribute like author (refer to
Listing 4-32). Let us configure the URL route to pass the name of the author
as the path parameter and map it with the DeleteView.

119

CHAPTER 4 DJANGO TEMPLATES

from firstapp.views import BookDeleteView

urlpatterns += [path("delete/<author>", BookDeleteView.as
view(), name="delete")]

The BookDeleteView class overrides the get object() method to
select the object corresponding to the author’s name passed
from the URL.

Listing 4-32. DeleteView

from django.views.generic.edit import DeleteView
class BookDeleteView(DeleteView):

model = Book
template name = "book confirm delete.html"
success_url = "../books/"

def get object(self):
return Book.objects.get(author=self.kwargs['author'])

We need to provide a template to be used by this view to perform this
operation. In the book_confirm_delete.html template (Listing 4-33), a POST
form asks for confirmation from the user, giving them the chance to cancel
the operation.

Listing 4-33. book_confirm_delete.html

<html>

<body>

<form method="post">
{% csrf token %}
<h2> {{ object.title }} By {{ object.author }}</h2>
<p>Are you sure you want to delete ?</p>

120

CHAPTER 4 DJANGO TEMPLATES

<input type="submit" value="Confirm"> <a href="../
list/"><input type="button" value="Cancel" />
</form>
</body>
</html>

When the delete operation is successfully executed, the browser is
directed to the view that lists out all the remaining books. Try entering the
URL as “delete/xyz” (where xyz is the author’s name) and check the behavior.

The form opens up with Confirm and Cancel buttons (Figure 4-7).
Hitting cancel takes the browser to the list page. Confirm page also
displays the list, but with the object deleted.

2 @ [Y localhost8000/firstapp/delete/f X =

& (O 6 (@ localhost:2000/firstapp/delete/Rubic Ay NG |
Beginning Django By Rubio
Are you sure you want to delete 7

Confirm || Cancel

Figure 4-7. Template for DeleteView

Django also has a couple of generic views for two of the most
common requirements: a view that displays the attributes of a single
attribute (DetailView) and a view that renders the list of selected objects
(ListView).

DetailView

Most web applications need a feature that displays one or more than one
attribute of a single object from the model, for example, the book () view
that we had used earlier. It displays the details of a book of a given id, read
from the path parameter in the URL. The DetailView class performs the

121

CHAPTER 4 DJANGO TEMPLATES

same task, in a much more elegant manner.

Once again, one essential attribute of the subclass of the DetailView
generic view class is the name of the model (the Book model). This class
also has a template name_ suffix property that defaults to _detail, which
means that it assumes that the name of the template that displays the
object details is model_detail. html. You may set any other string as the
suffix, or even specify any other template name (as in Listing 4-34). We are
going to use the same template (book.html) as in the earlier example.

Listing 4-34. DetailView class

from django.views.generic.detail import DetailView
class BookDetailView(DetailView):

model = Book

template _name = "book.html"

The DetailView subclass identifies the object to be processed,
depending on the path parameter that is a primary key, or a slug field. We
shall pass the primary key (pk) as the path parameter in the URL route to
map the BookDetailView.

from firstapp.views import BookDetailView
urlpatterns += [path("show/<int:pk>", BookDetailView.as view(),
name="show")]

Go to the browser (with the Django server running) and visit the
“show/2” URL route. The details of the book with primary key=2 will be
displayed.

ListView

This view performs the role of the books () function - a function-based
view explained earlier. It collects the queryset comprising of all the objects

122

CHAPTER 4 DJANGO TEMPLATES

in a model. By default, a subclass of ListView class (Listing 4-35) looks
for a template set as the value of the template_name property (list_books.
html). The get_context_data() method builds the context required for
the template.

Listing 4-35. ListView class

from django.views.generic.list import ListView
class BooklListView(ListView):

model = Book

template _name = "list books.html"

def get context data(self, **kwargs):
books = Book.objects.all()
context = {'books': books}

return context

As always, wire up the as_view() method of the above view class to the
“list/” URL route by updating the app’s URLCONF module.

urlpatterns += [path("list/", BookListView.as view(),
name="1list")]

The template code (Listing 4-36) renders the object collection in an
HTML table, with each row having buttons displaying the detailed view,
the update view, and the delete view of the respective object when clicked.

Listing 4-36. list_books.html

<h2 style = "text-align: center;">List of Books</h2>

<div style="overflow-x: auto;">
<p><input type="button"

123

CHAPTER 4 DJANGO TEMPLATES

value="Add New" /></p>

<table>
<tr>
<th>Title</th>
<th>Author</th>
<th>Price</th>
<th>Details</th>
<th>Update</th>
<th>Delete</th>
</tr>
{% for book in books %}
<tr>
<td> {{ book.title }}</td>
<td> {{ book.author }}</td>
<td> {{ book.price}}</td>
<td>
<input type="button" value="Detail" />
<Jax</td>
<td>
<input type="button" value="Update" />
<far</td>
<td>
<input type="button" value="Delete" />
<far</td>
</tr>
{% endfor %}
</table>
</div>

The URL http://localhost:8000/firstapp/list displays the list of books as
shown in Figure 4-8.

124

CHAPTER 4 DJANGO TEMPLATES

: 4 = (m] X
g rﬁ] ﬁ localhost: 2000/ firstapp/hist/ » +
C G) localhost:8000/firstapp/list/ A ST T |

List of Books

Add New |
Title Author Price Details Update Delete
Decoupled Django Gagliardi 3874 Detail Update | Delete |
Beginning Django Rubio 3053 Detail | Update | Delete |
Pro Django Alchin 4284 Detail | Update | | Delete |

Figure 4-8. Table template for ListView

You can experiment with the functionality of the Add New, Update,
and Delete buttons. The HTML code shown above uses some CSS styling,
which you can find out in the source code in the book’s repository.

Static Files

A web application framework such as Django mainly handles dynamic
content. However, many times the dynamic websites do need to serve ad-
ditional files such as images, JavaScript, or CSS. In Django, these files are
referred to as static files. The default project template installs the static-
files app (django.contrib.staticfiles), which manages the static files
in a Django project.

To use the static assets in a project, we should ensure that the following
configurations are in place.

125

CHAPTER 4 DJANGO TEMPLATES

If not already present in the settings.py module, set the STATIC_URL
parameter.

STATIC URL = 'static/'

This tells Django to look for the static files in the app/static folder (a
folder named as static in the app’s package folder). However, your project
might also have certain static assets located outside the app folder. In
that case, you can define a list of directories (STATICFILES_DIRS) to be
searched by Django to locate the static files.

STATICFILES DIRS = [
BASE DIR / "static",

]

When you are using the local Django server for running the application
(with the runserver command), it is in the DEBUG mode by default.
Django serves the static assets either from the app/static folder or the
folders in the STATICFILES_DIRS list.

When you decide to launch a Django-powered web application, the
development environment is not recommended. You need to host it on a
web server such as Apache, Ngin, etc., in the settings and define STATIC_
ROOT as the absolute path of a folder where all collected static files will
be placed. The normal practice is to designate the static folder under the
BASE_DIR (the parent project folder) for the purpose.

STATIC ROOT = os.path.join(BASE_DIR, 'static')

At the time of deployment, make sure that this folder collects all
the static files in the app/static folder as well as from the folders in
STATICFILES_DIRS. This is ensured by running the management
command - collectstatic:

python manage.py collectstatic

126

CHAPTER 4 DJANGO TEMPLATES

For now, though, we are sticking with the development environment
(with DEBUG=True in the settings module). Hence, all the static files in
the examples under this topic are assumed to be placed in the firstapp/
static folder.

To begin with, load the static template tag from the staticfiles app.

{% load static %}

The {% static %} template tag takes the relative path to your static file
as an argument. In a normal HTML, we use the tag to display
an image:

On the other hand, to include the image stored in the static directory of
your app, you'd use

Going a step ahead, to render the image whose name has been passed
to a template in a context, you'd use

How do we include a CSS file? A .css file is also treated as a static asset,
hence placed in the static folder. In a normal HTML code, the syntax of
including a CSS file is

<link rel="stylesheet" type="text/css" href="styles.css" />

But here, we want to include it as a static file. Provide its relative path
to the {% static %} tag in the href attribute.

<link rel="stylesheet" type="text/css" href="{% static 'style.
css' %r">

127

CHAPTER 4 DJANGO TEMPLATES

Here is a simple example. We want to display the text in a <h2> tag,
such that it is placed horizontally in the center of the page. The required
styling is put in style.css (Listing 4-37), and the file is placed in the
static folder.

Listing 4-37. style.css

h2 {
text-align: center;

}

We shall refer to this stylesheet in the template code as in Listing 4-38.

Listing 4-38. Including css file

<body>
{% load static %}
<link rel="stylesheet" href="{% static 'style.css' %}">
<h2>Hello World!</h2>
</body>

When rendered, the test will follow the text alignment as horizontally
centered.

Files with JavaScript code are also static files for Django. Using the
same principle, we can include a .js file in a template. The JS scripts are
usually loaded in the <head> section of the HTML script:

<head>
{% load static %}
<script src="{% static 'script.js' %}"></script>
</head>

Let us now implement the concepts of how to handle the static assets
with a few use cases.

128

CHAPTER 4 DJANGO TEMPLATES

Image As Static Asset

We have already seen how the DetailView works. The BookDetailView example
explained earlier presents the attributes of a book with the given primary key.
Let us modify the structure of the Book model (refer to Listing 4-39) by adding a
CharField (coverimg) that stores a string containing the name of the image
file that represents the cover page of the book.

Listing 4-39. Book model modified

class Book(models.Model):
id = models.AutoField(primary key=True)
title = models.CharField(max_length=50)
author = models.CharField(max_length=50)
price = models.IntegerField()
publisher = models.CharField(max_length=50)
ebook = models.BooleanField(default=True)
coverimg = models.CharField(max_length=50)

class Meta:
db_table = "books"

Since we have modified the model structure, we must run the
migrations. Use the UpdateView to add the image names in the coverimg
field of each object.

We don’t need to make any changes to the code of the BookDetailView
class. We shall, however, modify its template - books.html.

We are interested in displaying the cover image alongside the detailed
view. The main <div> tag in the <body> section of the page has two
adjacent <div> tags. On the left, we use the tag to insert the static
image with the {{ book.coverimg }} variable, and inside the right
<div>, we output the other book attributes. Listing 4-40 gives the updated
template code.

129

CHAPTER 4 DJANGO TEMPLATES

Listing 4-40. books.html - display static image

<html>
<body>
<div>

<div style="float:left;width:45%;">
{% load static %}

</div>

<div style="float:right;width:45%;" >

</div>
</div>
</body>
</html>

<p>ID: {{ book.id }}</p>
<p>Author: {{ book.author }}</p>
<p>Price: {{ book.price}}</p>
<p>Publisher: {{ book.publisher }}
</p>

{% if book.ebook %}

<p>Available as Ebook?: Yes</p>
{% else %}

<p>Available as Ebook?: No</p>
{% endif %}

<hr>

The detailed view of the book with ID=2 will appear as shown in

Figure 4-9.

130

CHAPTER 4 DJANGO TEMPLATES

r[r:] ﬁ localhost:8000/firstapp/show/2 X +

Q (O localhost:28000/firstapp/show/? A N |

Title: Beginning Django

ID: 2
Author: Rubio
Price: 3053

Beginnin

Available as Ebook?: No

Django Publisher: Apress

Apress:

Figure 4-9. Static image example

CSS and JavaScript

The objective of the example in this section is to display a list of clickable
<div> tags, each populated by the {{ book.title }} variable. Below each
of these <div> tags, a hidden <div> tag is inserted that displays an unor-
dered list of the other attributes of the book. To make the title holder <div>
element clickable, a JavaScript function - myfunction() - is registered with
its onclick() event.

The myfunction() function receives the id of the <div> clicked, finds
its next sibling (which happens to be the one containing the attributes
such as author, price, etc.), and toggles its display style between block and
none (block will hide the element, and none will display it).

Save the following function in script.js (refer Listing 4-41) and put the
file in the static/ folder.

131

CHAPTER 4 DJANGO TEMPLATES

Listing 4-41. JavaScript function to hide/display the <div> tag

function myfunction(id) {
var x=document.getElementById(id+id);

if (x.style.display === "none"
x.style.display = "block";
else

x.style.display = "none";

}

We shall also use certain CSS rules for the <div> tag that holds the title.
These CSS rules are stored in the style.css file, which is inside the static/ folder.

Listing 4-42 shows how both the static assets are loaded in the <head>
section of the template.

Listing 4-42. Loading static assets

<head>
<meta name="viewport" content="width=device-width,
initial-scale=1">
{% load static %}
<script src="{% static 'script.js' %}"></script>
<link rel="stylesheet" href="{% static 'style.css' %}">
</head>

Listing 4-43 shows the template code responsible for rendering the
clickable titles.

Listing 4-43. aboutbooks.html

{% for book in books %}
<div id = "item-{{ book.id }}" class="collapsible"
onclick="myfunction(this.id)">

{{ book.title }}

132

CHAPTER 4 DJANGO TEMPLATES

</div>

<div style="display:none; font-size: 20px;">

<1i>ID: {{ book.id }}</1i>
Author: {{ book.author }}</1li>
<1i>Price: {{ book.price}}</1i>
<1i>Publisher: {{ book.publisher }}</1i>
{% if book.ebook %}
Available as Ebook?: Yes
{% else %}
Available as Ebook?: No</1i>
{% endif %}

</div>

{% endfor %}

Lastly, we need a view that renders this template. Add an
aboutbooks () view (Listing 4-44).

Listing 4-44. aboutbooks view

def aboutbooks(request):
books = Book.objects.all()
context = {'books': books}
return render(request, 'aboutbooks.html', context)

Register the “aboutbooks/” URL route mapped to it in the
urlpatterns, as we have done throughout this chapter.

Visit the “aboutbooks/” URL route, and it displays the list of titles
(Figure 4-10). Click on any of them to show/hide the corresponding
details.

133

CHAPTER 4 DJANGO TEMPLATES

3 IE] [5 localhost:8000/firstapp/aboutbo. X +
S o (D) localhost:8000/firstapp/aboutbooks/ FARE R |

List of Books

Decoupled Django

Beginning Django

S

Author: Rubio

Price: 3053

Publisher: Apress
Available as Ebook?: No

Pro Django

a~

Figure 4-10. Using JavaScript in Django template

Django’s collection of generic views includes a few others such as
FormView, ReDirectView, as well as a few generic date views. Discussion
of these views has been kept outside the scope of this book. Interested
readers can go through the official documentation of Django.

Template Inheritance

As a Python developer, you must be familiar with the term “inheritance”
wherein a class extends the functionality of an existing class. Django

Template Language borrows a lot of terminology from Python - such as
variables, conditionals, and loops. Similarly, in Django, a template can also

4

be inherited, you'll soon learn how.

134

CHAPTER 4 DJANGO TEMPLATES

Any web application is likely to have many web pages, some static ones
and others dynamically rendered templates. Obviously, you would like
each page to have a uniform appearance, i.e., similar color scheme, fonts,
same header and footer on each page, etc.

As a simple example, consider a Django application with three views:
home, about, and login - each rendering a template index.html, about.
html, and login.html. It is desired to have a navbar on each page with links
to others and a footer with a copyright message.

One way is to put the navbar code and the footer on each page, which
is obviously not ideal. A better approach would be to have the navbar code
in top.html and footer in bottom.html and use the {% include %} tag in
each of the templates.

{% include %]} Tag

The include tag simply loads the contents of one template into another.
The include keyword inside the tag is followed by a string representing the
template to be included:

{% include "template.html" %}

Normally, the templates in a Django application are placed in the
BASE_DIR/templates folder. The template to be included should also
be in this folder; however, its path can be mentioned relatively or in
absolute terms.

Assuming that the index() view function is supposed to render the
index.html template as shown in Listing 4-45.

Listing 4-45. index view

from django.shortcuts import render
def index(request):
return render(request, 'index.html')

135

CHAPTER 4 DJANGO TEMPLATES

This page simply displays the text “This is Home page”. However, we
want a navbar and a footer to be displayed. For this, first create top.html
and bottom.html and then include them in index.html, as in Listing 4-46.

Listing 4-46. Top and bottom templates

#top.html
<nav>

Home</1i>
About</1i>
Login</1li>

</nav>
#bottom.html
<footer>
<p style="text-align: center;">© 2025 All rights
reserved.</p>
</footer>

Note that these two HTML files do not have the <html> and <body>
tags as they will be appearing in the HTML code for index.html (in which
these will be included).

While writing the HTML script of index.html, use the include tag to
load top.html and bottom.html before and after its actual contents.

The navbar is stylized by an appropriate CSS code, made available in
the style.css file placed in the static folder. The CSS code is not reproduced
here; you may find the same in the book’s repository.

Listing 4-47 shows the HTML script for index.html.

136

CHAPTER 4 DJANGO TEMPLATES

Listing 4-47. Including templates

{% load static %}
<!DOCTYPE html>
<html lang="en">
<head>
<link rel="stylesheet" type="text/css" href="{% static
"style.css' %}">
</head>
<body>
{% include 'top.html' %}
<h1 style="text-align: center;">This is Home page</h1>
{% include 'bottom.html' %}
</body>
</html>

Make sure that the routes for the views are properly configured in the
app’s urls.py file (Listing 4-48).

Listing 4-48. urls.py

from django.urls import path
from . import views

urlpatterns = [
path("", views.index, name="home"),
path("about/", views.about, name="about"),
path("login/", views.login, name="login"),

If all the above actions are implemented correctly, the index template
should display a neat navbar and a footer as shown in Figure 4-11.

137

CHAPTER 4 DJANGO TEMPLATES

: @ @ Home X -4 - a X

< O () localhost:8000/myapp/ 7 35

Home About Login

This is Home page

© 2025 All rights reserved.

Figure 4-11. Including another template

You can go ahead and construct the other templates (about.html and
login.html) on similar lines. However, you need to include the header and
footer templates manually in each of them (and there may be many more
templates in a more comprehensive application). This in fact is against
DRY - one of the guiding principles of Django. This is where the other
approach of using template inheritance comes in.

If you recall the principle of inheritance in Python (or any object-
oriented language for that matter), the parent class defines one or more
methods, which the child class may (or may not) override. As a result,
when an object of the child class calls a method from its parent, it performs
the process as per its overridden functionality (or the functionality defined
in the parent class if it is not overridden). Inheritance in Django templates
works much the same way.

The two important template tags in this context are {% extends %} and
{% block %}.

138

CHAPTER 4 DJANGO TEMPLATES

{% block %]} Tag

To implement template inheritance, you need to design the parent tem-
plate that acts as a blueprint for the other templates. It will have certain
static or fixed content that will be rendered as it is in the child templates.
The navbar and the footer are such static parts. For the variable sections,
you need to define the blocks. The block - endblock construct defines

a block.

{% block block name %}

{% endblock %}

For example, you define a base.html template to be used for
inheritance, and you define a title block such as

{% block title %}
Title
{% endblock %}

When another template inherits this base.html with the help of the
extends tag (explained next), it may or may not redefine the title block. The
block tag in the parent template indicates to the template engine that a
child template may override those portions of the template.

For our three-page application, we define the parent template as base.
html as in the code in Listing 4-49.

Listing 4-49. Parent template (base.html)

<IDOCTYPE html>
<html lang="en">
<head>
<title>
{% block title %}

139

CHAPTER 4 DJANGO TEMPLATES

Title
{% endblock %}
</title>
</head>
<body>
{% include 'top.html' %}
<div class="content">
{% block content %}
{% endblock %}
</div>
{% include 'bottom.html' %}
</body>
</html>

Note that there are two blocks in the code - one for the title and
another for the content. The content block is empty. Hence, each child
template must provide its content for such a dummy block.

{% extends %} Tag

The extends tag is used to establish inheritance between the child and the
parent template. In the index.html template, the statement

{% extends 'base.html' %}

tells the template engine that it extends (inherits) the base template.
When it is evaluated, the template engine will notice the block tags in base.
html and replace those blocks with the contents of the child template.
Hence, the index.html code will now look like that shown in
Listing 4-50.

140

CHAPTER4 DJANGO TEMPLATES
Listing 4-50. Child template (index.html)
{% extends 'base.html' %}

{% block title %}
Home
{% endblock %}

{% block content %}
<h1 style="text-align: center;">This is Home page</h1>
{% endblock %}

Similarly, you can construct the about and login templates. Instead of
just a text, we shall populate the content block in the login.html template
with an HTML form (Listing 4-51).

Listing 4-51. Child template (login.html)
{% extends 'base.html' %}
{% block title %}Login{% endblock %}

{% block content %}

<div id="ido1">

<form class="modal-content animate" action="" method="POST">
{% csrf _token %}
<div class="container">
<label for="username">Username</label>
<input type="text" placeholder="Enter Username"
name="username">
<label for="password">Password</label>
<input type="password" placeholder="Enter Password"
name="password">

141

CHAPTER 4 DJANGO TEMPLATES

<input type="submit" value="Login">
</div>
</form>

</div>

{% endblock %}

The /login route thus renders a nicely stylized login form, shown
in Figure 4-12. The CSS code for this purpose is available in the code

repository.
z @ @ Login X -+ - 8]
&« G ©) localhost:8000/myapp/login/ e

Home About Login

Username
} Enter Username
Password

Enter Password

© 2025 All rights reserved.

L

Figure 4-12. Using template inheritance

142

CHAPTER 4 DJANGO TEMPLATES

Thus, this powerful feature of template inheritance lets you maintain
a consistent layout across your pages and makes it easier to update the
common layout in one place.

Summary

Templates are the crucial component of Django’s architecture. This chap-
ter started with rendering a static template, and then we moved on to
learn how to inject a context in the template. We learned about different
template tags. Next, this chapter discussed the form templates - the HTML
form and the ModelForm.

A substantial part of this topic discusses the generic views and how to
build the templates for each generic view. We also learned about the static
assets and how to load images, CSS, and JavaScript in the template code.
Lastly, an important feature of Django - the template inheritance - has
also been explained with a suitable example.

This chapter, along with the previous three chapters, forms the core of
web development with Django. In the next chapter, we shall move one step
ahead and learn to add important features in a Django app, such as state

management, messaging, exception handling, etc.

143

CHAPTER 5

Django: Using
Databases

As we learned earlier in this book, Django’s ORM API is one of its standout
features with which the database interaction becomes much more
Pythonic, rather than having to execute raw SQL queries. However, it is
too tightly coupled with the other features of the Django framework - such
as the migrations, the admin interface, and more. There are other ORM
libraries for Python, notably SQLAlchemy, SQLObject, etc., which are far
more flexible. SQLAlchemy offers support for a wider range of databases
and works well with other frameworks like Flask. Hence, if someone wants
to port a Flask application to Django, is it possible to use SQLAlchemy with
Django, and if yes, how? We shall find an answer to this in this chapter.

The Django ORM provides the abstraction layer for the relational
(SQL-based) databases only. However, in today’s world of real-life
web applications, we need to handle a schema-less database such as
MongoDB. In this chapter, we shall also explore how to use MongoDB in a
Django application.

The topics to be discussed in this chapter include

e SQLAlchemy ORM
o Migrations with Alembic

¢ MongoDB

© Malhar Lathkar 2025 145
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_5

https://doi.org/10.1007/979-8-8688-1472-3_5#DOI

CHAPTER S5 DJANGO: USING DATABASES
 PyMongo
¢ MongoEngine

¢ Djongo

SQLAIchemy ORM

SQLAIchemy is a comprehensive SQL toolkit that has two components:
SQLAIchemy Core and SQLAlchemy ORM. The Core part executes
raw SQL queries with its own SQL Expression Language (SQEL). The
Expression Language lets you interact with a relational database through
the Python code. In a sense, it adds a bit of abstraction to the standard
SQL queries. The ORM part is built upon the Core part. In principle,
SQLAIchemy ORM is similar to the Django ORM we learned earlier in
the book, as it too presents a high-level abstraction. However, there’s a
significant difference in their approach, as we shall shortly come to know.
SQLAIchemy communicates with almost any type of database
(MySQL, Oracle, MS SQL Server, PostgreSQL, SQLite included) with a
dialect system based on the corresponding DB-API-compliant module.
As aresult, if you intend to use a MySQL database, a Python module
like pymysql must be available. The engine object that powers both the
Expression Language constructs and the ORM uses the database-specific
dialect and the connection pool. Figure 5-1 represents various constituents
of SQLAlchemy.

146

CHAPTER5 DJANGO: USING DATABASES

Expression
LLanguage -> ORM
o Soli -
| I
! Engine !
: ' | Core
' | Connection Pool Dialect !
1 1
Lo e e o o e e e e e e e e = = = = = = - = — |
DB-API

D

Figure 5-1. Schematic diagram of SQLAlchemy

SQLAIchemy adopts the data mapper pattern for implementing the
abstraction. Django ORM, on the other hand, follows the active record
pattern.

As we have seen, Django wraps the database table into a model class,
and its single instance is tied to a single row. An in-memory object is
added to the table as a row. Conversely, a single row is loaded as an object.
When any of the attributes are updated, it also updates the row.

In the data mapper pattern used by SQLAlchemy, the data is
transferred between a database table and its in-memory representation.
Here, both the states are kept independent of each other. In other words,
the object data is persisted only when it is explicitly committed.

147

CHAPTER5 DJANGO: USING DATABASES

Let us start by installing SQLAlchemy in the current Django virtual
environment with the PIP utility.

(djenv) C:\workspace>pip3 install sqlalchemy

This will install the current version of the SQLAlchemy package, which
is 2.0.29, as can be confirmed with the _version__ attribute.

>>> import sqlalchemy
>>> sqlalchemy. version _
'2.0.29'

The latest version of SQLAlchemy is compliant with the features of
modern Python like type annotations and asyncio.

Engine

As you must have understood from the above figure, you have to obtain
the engine object as the first step to be able to use the ORM API. The
Engine provides the connection to the database to be used and holds

onto the connections inside of a connection pool for fast reuse. The
create_engine() function that returns the engine object is called with the
following syntax:

from sqlalchemy import create_engine
engine = create_engine(URL, **kwargs)

The first positional parameter is URL, which is a string indicating the
database dialect and other connection credentials required, such as the
username and the password.

SQLite is a file-based database, and Python’s standard library has built-
in support for it in the form of sqlite3 module. Hence, the URL parameter
that returns the engine object for an in-memory SQLite database is

engine=create_engine('sqlite:///:memory:")

148

CHAPTER5 DJANGO: USING DATABASES

You can use an additional argument - echo=True - to the above
constructor, which shows the equivalent SQL queries emitted by
SQLAlchemy on the console.

You would prefer a persistent, file-based database, in which case the
URL should be given as

engine =create_engine('sqlite:///db.sqlite3"', echo=True)

For the other database variants, the URL parameter must include its
dialect (database + module) in addition to the connection credentials. For
example, if you intend to use a MySQL database and you have installed the
pymysql module, the URL takes the following format:

engine = create engine('mysql+pymysql://root@localhost/
mydatabase")

The above statement refers to the database named mydatabase on the
MySQL server installed on the localhost and has root as the username with
no password set.

Additional keyword arguments may be given; they may be specific to
the engine, the dialect, as well as the connection pool.

Just to give another example, the URL for PostgreSQL database using
the psycopg2 module looks like

engine = create_engine("postgresql+psycopg2://user:password@
localhost/dbname")

Table in SQLAIchemy Core

While using SQLAlIchemy Core, you need to declare a Table object to be
mapped with a corresponding database table, define its Column attributes,
and add its metadata in a collection.

149

CHAPTER5 DJANGO: USING DATABASES
You need to declare a MetaData object first:

from sqlalchemy import MetaData
metadata = MetaData()

We can now declare a Table object as per the prescribed syntax:

from sqlalchemy import Table, Column, Integer, String
mytable = Table(

dbtable, metadata,

Column(col1, type, constraints),

Column(col2, type, constraints),

)

The first parameter is the name of the table in the database. Each field
is an object of Column class, for which its name, type, and other optional
constraints such as primary key, secondary key, etc., are specified.

Let us create a SQLAlchemy table here that reflects the structure of the
Books tabls used in the earlier chapter.

from sqlalchemy import MetaData
metadata = MetaData()

from sqlalchemy import Table, Column, Integer, String
book = Table(
"Books", metadata,
Column("id", Integer, primary key=True),
Column("title", String, nullable=False),
Column("author", String, nullable=False),
Column("price", Integer),
Column("publisher”, String)

150

CHAPTER5 DJANGO: USING DATABASES

There may be multiple Table objects in your application; the details
of each of them are saved in the metadata object. Whenever its create_
all() method is called, SQLAlchemy emits the CREATE TABLE query for
each Table.

metadata.create all(engine)
Here is the console log:

INFO sqlalchemy.engine.Engine BEGIN (implicit)
INFO sqlalchemy.engine.Engine PRAGMA main.table_ info("Books")
INFO sqlalchemy.engine.Engine [raw sql] ()
INFO sqlalchemy.engine.Engine PRAGMA temp.table info("Books")
INFO sqlalchemy.engine.Engine [raw sql] ()
INFO sqlalchemy.engine.Engine
CREATE TABLE "Books" (
id INTEGER NOT NULL,
title VARCHAR NOT NULL,
author VARCHAR NOT NULL,
price INTEGER,
publisher VARCHAR,
PRIMARY KEY (id)
)
INFO sqlalchemy.engine.Engine [no key 0.00224s] ()
INFO sqlalchemy.engine.Engine COMMIT

Model

Conceptually, the model in SQLAlchemy serves the same purpose as the
model in Django ORM. It is a Python class whose attributes are mapped
with the fields of a table in the relational database.

151

CHAPTER5 DJANGO: USING DATABASES

The SQLAlchemy ORM API provides a fagade around this complex
procedure in the form of ametaclass named the DeclarativeBase
class. A subclass of DeclarativeBase acts as a metadata container for all
the models.

from sqlalchemy.orm import DeclarativeBase
class Base(DeclarativeBase):
pass

A model is a class that inherits the Base class and establishes its
mapping with a database table through its _tablename _ property.

from sqlalchemy.orm import mapped column

class model(Base):
__tablename__ = dbtable
Col1l = mapped column(type, constraints)
Col2 = mapped column(type, constraints)

We use the mapped _column, an ORM-aware construct, to indicate an
attribute that’s mapped to a Core Column object.

Let us declare a SQLAlchemy ORM model that reflects the structure of
the books table, used in the earlier examples. Add the following code in the
models.py module in the app folder:

from sqlalchemy import Column, Integer, String

class Base(DeclarativeBase):
pass

class Book(Base):
__tablename__ = 'Books'

id = mapped_column(Integer, primary key=True, index=True)
title = mapped column(String(256))

152

CHAPTER5 DJANGO: USING DATABASES

author = mapped column(String(256))
price = mapped column(Integer)
publisher = mapped column(String(256))

Since the Book class is inherited from the DeclarativeBase, which
really is a metadata container, calling the create_all() method executes
the CREATE TABLE BOOKS query (as we saw in the case of a Table object):

Base.metadata.create_all(engine)

As the echo parameter is set to True in the call to the create_engine()
function, the console log shows the CREATE TABLE query being emitted,
exactly the same as in the earlier case.

Session

How does SQLAIchemy synchronize the model with the SQL table? This is
where the Session plays an important role. At a lower level of interaction,
we open a connection with the database and execute SQL queries

that perform CRUD operations (as we discussed in Chapter 3, section
“DB-API”). As mentioned earlier, Django ORM uses the active record
pattern, and hence, the effect of create(), update(), and delete()
methods from the Manager class gets reflected in the database instantly.
SQLAIchemy ORM uses the data mapper pattern, which needs an explicit
instruction to add/update/delete a row corresponding to the object. The
Session object performs exactly this role.

In the general sense of its meaning, the term “session” refers to the
extent for which any interaction takes place. In the context of a database,
the session starts when a connection is established and goes on till the
connection is closed. In between, the user performs database-related
actions - commonly known as CRUD operations.

153

CHAPTER5 DJANGO: USING DATABASES

In SQLAIchemy, you start the session either by creating an instance of
Session class or with the help of the SessionManager factory. Any which
way, the Session object requests for a connection resource from the Engine
referring to the database in use.

Here’s how we use the SessionManager factory:

from sqlalchemy import create engine
engine = create engine('sqlite:///db.sqlite3"', echo=True)

from sqlalchemy.orm import sessionmaker
session = sessionmaker(bind=engine)

You may prefer to declare an object of Session class:

from sqlalchemy.orm import Session
session = Session()

This object is really a “holding zone” for all the ORM objects. Once you
initialize an object of a model (subclass of DeclarativeBase), it has to be
added to the session for it to be subsequently committed persistently to
the database. On the other hand, you populate an ORM object with a row
from the database table for it to be eventually updated or deleted.

We have declared a Book model earlier. Let us initialize a Book object,
add it to the SQLAlchemy session, and commit the session.

b1=Book(id=1, title="Decoupled Django", author="Gagliardi",
price=3874, publisher="Apress")

session.add(b1)

session.commit()

session.close()

Python’s preferred approach is to use the context manager that closes
the session object at the end of the with: block. Also, the background
interaction with the database is given the protection of Python’s exception

154

CHAPTER5 DJANGO: USING DATABASES

handling mechanism by placing the code inside the try: block. Here’s a
Django view function that adds a new Book object:

def addbook(request):
with Session(engine) as session:
b1=Book(id=1, title="Decoupled Django",
author="Gagliardi", price=3874, publisher="Apress")
session.add(b1)
session.commit()
return HttpResponse("New Book added")

A more user-friendly approach would obviously be to get the object
data from the user as an HTML form input and parse it to the model
object, and then to be added to the session.

def addbook(request):
if request.method=="POST":
with Session(engine) as session:
data = request.POST
ttl = data["title"]
auth = data["author"]
price = data["price"]
pub = data["publisher"]
bl = Book(title=ttl, author=auth, price=price,
publisher=pub)

session.add(b1)

session.commit()

return HttpResponse("Record added")
context={}
return render(request, "bookform.html", context)

155

CHAPTER5 DJANGO: USING DATABASES

However, we cannot use Django’s Form API (including the ModelForm)
to render an HTML form that is automatically mapped to the model
structure, as Django’s Form is tied with the Django ORM only. Instead,
you may look to use other server-side Form libraries (such as WTForms)
as areplacement for Django Form. The discussion on WTForms is not
a part of this book’s scope. Interested readers may refer to the official
documentation (https://wtforms.readthedocs.io/) and other resources
on the Internet.

Alembic

As we learned earlier (in Chapter 3, section “Run Migrations”), the
propagation of the initial definition of a model to the corresponding
table in the database, as well as any subsequent changes in its structure,
is handled by Django’s migration-related commands. The migration
mechanism also serves as an excellent tool for version control. Even
though it is very easy to use, Django’s migration is integrated tightly with
Django’s ORM. As such, it cannot be used if you intend to use any other
ORM library (such as SQLAlchemy) apart from Django’s own ORM.

Fortunately, SQLAlchemy has its own migration API called Alembic.
Alembic is much more flexible as compared to Django migrations.
Since SQLAlchemy supports a larger number of relational databases
as compared to Django, the use of Alembic is essential if you intend to
employ the SQLAlchemy ORM in your Django project.

In this section, we shall learn how to manage migrations of
SQLAlchemy models with Alembic.

Let us start by installing Alembic in the same Django environment, in
which we have earlier installed SQLAlchemy:

(djenv) C:\workspace>pip3 install alembic

156

https://wtforms.readthedocs.io/

CHAPTER5 DJANGO: USING DATABASES

From inside your Django project folder, run the following command to
initialize Alembic:

alembic init alembic

This command places the file alembic.ini in the project directory
(where the manage. py script, the app folder, and the SQLite database
are present). Alembic uses different parameters initialized in this file to
manage the migrations. Among others, the sqlalchemy url parameter
points to the database to be migrated. Since we are using the SQLite
database, we need to edit the alembic.ini file and assign the database
URL to this parameter:

sqlalchemy.url = sqlite:///./db.sqlite3

For other databases (such as MySQL or PostgreSQL), the parameter
may be set in the following form:

sqlalchemy.url = driver://user:pass@localhost/dbname

The init command also creates a folder alembic in the same path, with
the files env.py and script.py.mako, along with a README file in it.

script.py.mako is a Mako template file that is used to generate
new migration scripts. Every new migration script is placed inside the
versions folder.

To create a new database migration with the alembic revision
command, it is recommended to use an optional -m flag to add a
descriptive message:

alembic revision -m "create Book Table"

A new migration script will be created in the alembic/versions directory.
Alembic assigns the file name to the migration script as a combination of a
unique GUID-based revision number and the comment text. For example,
the migration script could be named 4a525b80c4c9_create_book_table.
py. Figure 5-2 shows how typically the alembic folder populates.

157

CHAPTER5 DJANGO: USING DATABASES

alembic.ini
db.sqlite3
manage.py

alembic
env.py
README
script.py.mako

versions
4a525b80clc9_create_book_table.py
Tbdedb7040cf_add_year_field.py

Figure 5-2. Schematic diagram of SQLAlchemy

To propagate the model definitions from the migration script to the
database, use the upgrade command (this serves the same purpose as the
migrate command in Django ORM):

alembic upgrade head

Here, head refers to the latest migration script. The downgrade
command reverts the database schema to its earlier version if one or more
models or columns are dropped.

Alembic can also auto-generate migration scripts based on the
current definitions of your SQLAlchemy models. To auto-generate, use the
autogeneration feature; you need to edit the env.py script in the alembic
folder and add the following statements to it:

from myapp.models import Book
target metadata = [Book.metadata]

Use the following command:

alembic revision --autogenerate -m "Create Book Table"
alembic upgrade head

158

CHAPTER 5 DJANGO: USING DATABASES
On the command prompt terminal, the following log is displayed:

INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-
transactional DDL.

INFO [alembic.runtime.migration] Running upgrade ->
4a525b80c4c9, Create Book Table

You can now open the database and confirm if the Book table has been
created. Alembic identifies the first migration script as base.

Let us modify the Book model by adding a new attribute and generate
a new migration script. The Book model now looks like the following:

from sqlalchemy import Column, Integer, String

class Base(DeclarativeBase):
pass

class Book(Base):
__tablename = 'Books'

id = mapped_column(Integer, primary key=True, index=True)
title = Column(String)

author = mapped column(String(256))

price = mapped column(Integer)

publisher = mapped column(String(256))

year _of pub = mapped column(Integer)

First, find out if the change necessitates a new migration script by
running the alembic check command:

alembic check
New upgrade operations detected:[('add_column', None, 'Books',
Column('year of pub', Integer(), table=<Books>))]

159

CHAPTER5 DJANGO: USING DATABASES

Create a new migration script with the auto-generated command (add
a suitable message):

alembic revision --autogenerate -m "add year field"

The new script with a unique revision number will be stored in the
versions directory (e.g., 7bd04b7040cf_add_year_field.py), which will now
be treated as head while running the upgrade command:

alembic upgrade head
We can also view the history of the migrations generated:

alembic history
4a525b80c4c9 -> 7bdo4b7040cf (head), add year field
<base> -> 4a525b80c4c9, Create Book Table

To fall back to the status of the database to any of the earlier revisions,
you can use the downgrade command. Our database has been updated
to the latest migration script referred to as head. It can be reverted to
a specific revision number. You can also perform relative upgrades or
downgrades. To revert to the state of Book table before the year of pub
column is added, use the following command:

alembic downgrade -1

INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-
transactional DDL.

INFO [alembic.runtime.migration] Running downgrade
7bdo4b7040cf -> 4a525b80c4c9, add year field

Advantage of SQLAlchemy notwithstanding, there are a lot of
limitations of using it with Django. As mentioned in the very beginning
of this book, Django is an opinionated framework, not flexible enough to
let the user choose the tools other than those bundled with the Django
package. The models used in the apps bundled with Django (such as the

160

CHAPTER5 DJANGO: USING DATABASES

admin app, the auth app, etc.) can be propagated only with the databases
officially supported by Django (MySQL, Oracle, PostgreSQL, and SQLite).
Hence, even if you choose to use other databases with the SQLAlchemy
support, the built-in apps won’t work with them.

There is an experimental django-sorcery package that does support
the admin interface, but it is not compatible with the latest version of
Django as well as SQLAlIchemy.

Advent of NOSQL Databases

Relational databases (the likes of Oracle, SQL Server, MySQL, SQLite, etc.)
are around for over seven decades and are still widely employed in all
applications - big or small. However, they seem to fall short when it comes
to handling flexible data models of modern real-time applications. The
NOSQL databases came on the horizon in the early 2000s and since then
are being increasingly used.

One of the main limitations of relational databases is that their design
is based on tables having fixed schemas. NOSQL databases, on the other
hand, are schema-less. This makes them more scalable as compared to
SQL-based databases. The distributed architecture of NOSQL databases
makes them more available and hence suitable for applications that need
to handle huge amounts of data.

MongoDB is the most widely used NOSQL database. It is a document
store database. There are other NOSQL databases as well - such as
Amazon DynamoDB (a key-value store database), Cassandra (a wide-
column store database), and others. In this chapter, we shall discuss how
the MongoDB database is used as a database backend for Django-powered
applications.

161

CHAPTER5 DJANGO: USING DATABASES

MongoDB

MongoDB is an open source, cross-platform, schema-less (NOSQL),
document store (also called document-oriented) database. MongoDB
has been developed by MongoDB Inc. (previously 10gen), an American
software company in 2009. Its current stable version is 7.0.11.

A MongoDB database consists of one or more Collections. Each
Collection is a document store. It is a collection of one or more
Documents. Each Document is a JSON-like representation of field
and value pairs. To be precise, MongoDB uses a Binary JSON (BSON)
representation - a variant of JSON. Although a Collection contains
Documents, each Document can have a variable number of field-value
pairs. That’s what schema-less means.

Compare this with a typical relational database that has one or more
tables each with a fixed schema or structure. Each row in the table is a
record with one or more columns as defined in the schema.

Thus, a Collection in MongoDB is analogous to the table in the relational
database, and each BSON document to the record. The following figure
offers a good comparison between the relational database and MongoDB.

Installation

You can use MongoDB mainly in two ways. One is to install the software
locally on your machine, and the other is to use MongoDB Atlas.

Local Deployment

For local installation, MongoDB is available in two editions: Community
edition and Enterprise edition. Both have the same developer features,

but the Enterprise version provides additional operational and security
features as well as advanced tools such as Ops Manager, BI Connector, and
Enterprise Operator for Kubernetes.

162

CHAPTER5 DJANGO: USING DATABASES

To install MongoDB locally, download the installer software that is
appropriate for your operating system from https://www.mongodb . com/
try/download/community and follow the installation instructions.

While on a Windows machine, install MongoDB in the D:\MongoDB
directory. Make sure that you also create a \data\db directory. Start the
MongoDB server by running the mongod command:

D:\Mongodb\bin>mongod

If MongoDB has been properly installed, you should get the following
message in the console log:

{"t":{"$date":"2024-06-16T00:23:36.251+05:30"},"s":

"I", "c":"CONTROL", "id":4615611, "ctx":"initandlisten","msg"
:"MongoDB starting","attr":{"pid":18852,"port":27017,"dbPath":
"D:/data/db/","architecture":"64-bit","host":"GNVBGL3"}}

This indicates that the MongoDB server is listening at port 27017 of the
localhost.

Atlas

Another way to use MongoDB is using its cloud-based service called
MongoDB Atlas. You can easily deploy, operate, and scale MongoDB
with Atlas.

Sign up and sign in to MongoDB to begin with by following the link
https://account.mongodb.com/account/login, and create a free cluster
with the provider of your choice.

Add your current IP address in the IP Access List (Figure 5-3).

163

https://www.mongodb.com/try/download/community
https://www.mongodb.com/try/download/community
https://account.mongodb.com/account/login

CHAPTER5 DJANGO: USING DATABASES

= Network Access

=

IP Access List

+ADD IP ADDRESS

Commaent Stotus Agtions

Created as part of the Auto Satup process @ Active QEDIT | @ DELETE

® Active QEDIT | @ DELETE

& Active O EDIT | B DELETE

Figure 5-3. Network access whitelist

MongoDB Shell

You can interact with the server with the MongoDB Shell (similar to
MySQL Shell, or SQL Plus for Oracle). You need to download and install
Mongo Shell from https://www.mongodb.com/try/download/shell. Open
another command terminal in its installation directory, and run the fol-

lowing command:

C:\Users\mlath\mongosh>mongosh
Current Mongosh Log ID: 666de3e6149d0383b990defd

Connecting to: mongodb://127.0.0.1:27017/?directConnec
tion=true8serverSelectionTimeoutMS=20008appName=mongosh+2.2.9
Using MongoDB: 7.0.4

Using Mongosh: 2.2.9

test>

You can now perform the CRUD operations on a local database from
within the MongoDB Shell.

To connect with the cluster with the MongoDB Shell, obtain the con-
nection string as shown in Figure 5-4.

164

https://www.mongodb.com/try/download/shell

CHAPTER5 DJANGO: USING DATABASES

v Q- ®
Set up connection security Choose a connection method Connect
| don't have the MongoDB Shell installed [| have the MongoDB Shell installed]

1. Select your mongo shell version

mongosh version Or mongo version

mongosh (2.0 or later] -

2. Run your connection string in your command line

Use this connection string in your application

mongosh "mongodb+srv://clusterd.oh28x8g.mongodb.net/" --apiVersion 1 —-username ia
mlathkar

e Database User, mlathkar. When entering your password, make

Figure 5-4. Atlas connection string

Paste the connection string into the command terminal. Enter the
password when prompted.

C:\Users\mlath\mongosh>mongosh "mongodb+srv://cluster0.oh20x8g.
mongodb.net/" --apiVersion 1 --username mlathkar

Enter password: *¥ixskkk

Current Mongosh Log ID: 666dea805e7cda09d090defd

Connecting to: mongodb+srv://<credentials>@clustero.
oh20x8g.mongodb .net/?appName=mongosh+2.2.9

Using MongoDB: 7.0.11 (API Version 1)

Using Mongosh: 2.2.9

Atlas atlas-13zoim-shard-0 [primary] test>

You can execute MongoDB commands for CRUD operations; they are
similar to SQL queries.

165

CHAPTER 5 DJANGO: USING DATABASES
For instance, to create a new database:

test> use mydb;
switched to db mydb

A Collection is implicitly created when you insert a document. The
insertOne() function adds a document in the collection.

mydb> db.books.insertOne({id:1, title: "Decoupled Django",
author: "Gagliardi", price: 3874, publisher: "Apress"});
{

acknowledged: true,

insertedId: ObjectId('666ea2c7e1329c760790defe")

}
mydb>

Compass

MongoDB Compass is a free, GUI tool with which you can conveniently
interact with MongoDB databases, instead of using the command-line
MongoDB Shell.

The MongoDB server installer usually offers to install Compass while
setting up the server, although it can be installed separately also.

Invoke the Compass app (ensure that either the local MongoDB server
is running or you are connected with the Atlas cluster). Use the URL
mongodb://localhost:27017 (as in the Figure 5-5) to connect with the
locally deployed MongoDB server.

166

¥ MaongoDE Compass

Connect Edit View Help

Compass

New connection

@ Saved connections
#3) Recents

& localhost:27017

clusterl.oh20x8g.mong...

CHAPTER 5

New Connection

URI ©

mongodb: flocolhost: 27017/

» Advanced Connection Optlons

New to Compass and don't have o
cluster?

IFyou dan't already have a eluster, you can
ereate one for free using MangaDE Atlas @

CREATE FREE CLUSTER

DJANGO: USING DATABASES

®

FAVORITE

Edit Connection String @)

it i m

Figure 5-5. Connect MongoDB Compass to the local

MongoDB server

167

CHAPTER5 DJANGO: USING DATABASES

Refer Figure 5-6 to open the required database and insert documents

using the interface.

r
| L] MCﬂgODHCOmDiSﬁ-|0Ca|hD§l:z.“L\1-‘,l’l‘-mgnbﬂok_‘s - o » |
| Conmect Edit View Comection belp

D t:

mowe |4

newdb.books 1 1
NTS N
Documents Aggrogotions Schema Indexes Validation
Fiter® @ = Generate qu | Explain Resat > | Options »
1-Tofl 2 = 2

(7 EXPORT DATA -~

© ADD DATA ~

d": "666895e31556e8853afo08e2"

': "Decoupled Django”,
'Gagliardi",

: "Apress"

Figure 5-6. Add a document

You can also work with the Atlas cluster. Fetch the connection string

(Figure 5-7) for Compass from the online interface.

168

CHAPTER S5 DJANGO: USING DATABASES

x
Connect to Cluster0
@ 9 ®
Set up connection security Choosa a connection method Connect

Connecting with MongoDB Compass

I don't have DB Comp ; ad | have MongoDB Compass installed
1. Choose your version of Compass

112 or loter -

See your Compaoss version in “About Compass”
2. Copy the connection string, then open MongoDB Compass

mongodb+srv: //mlathkar: <password>@cluster®.oh20x8g. mongodb. net/ ig
Replace <password> with the password for the mlathkar user, Ensure any options are URL encoded. &

Figure 5-7. Connection string of the Atlas cluster

As shown in Figure 5-8, use the connection string for connection in the
Compass app (replace the asterisks with your password).

169

CHAPTER5 DJANGO: USING DATABASES

i
* MongoDB Compass

Connect Edit View Help

Compass -]
New connaction + New Connection
(%) Saved connections i
mongodbran: fmbathkar " @cluste

/3) Recents

B locolhast:27017

» Advanced Connection Optlons
cluster(loh20x8g..

New to Compass and don'thave a
cluster?

Fyou dor't already have a cluster, you can

o “
create one for free using MangaDB Atlos &

rDah2ixBg.mongodb.net,

Figure 5-8. Connect MongoDB Compass to Atlas

FAVORITE

Edit Connection String @)

However, we would rather work with the MongoDB database from

within a Django app, instead of the MongoDB Shell or the Compass app.

You can use one of the following three approaches to use MongoDB as

a database backend with Django:

PyMongo: PyMongo is a Python package, developed

by MongoDB as the official driver for interacting

with Python in general and hence with Django.

MongoEngine: MongoEngine is a Python library

that acts as an Object-Document Mapper with
MongoDB. It is similar to the Django ORM.

Djongo: Djongo acts as a transpiler (layer of
translation) between Django’s ORM API and

MongoDB’s own queries.

170

CHAPTER5 DJANGO: USING DATABASES

PyMongo

Start by installing the PyMongo package from Python’s standard package
library. Certain additional libraries are also recommended to be installed
alongside.

pip install pymongo[snappy,gssapi,srv,tls]

As mentioned, PyMongo itself is MongoDB’s official Python driver. The
Generic Security Service Application Program Interface (GSSAPI) is an ap-
plication programming interface for programs to access security services.
This also installs python-snappy, which is a Python binding for the snappy
compression library from Google. python-1ibtls library provides a high-
level interface for secure network communication.

It is also recommended to install dnspython, a DNS toolkit for Python,
needed especially when working with MongoDB Atlas, where you need to
use mongodb+srv:// URIs.

pip install dnspython

Set up a typical Django project with the startproject command, cre-
ate a Django app (myapp) with the startapp command, and include it in
the INSTALLED APPS list, as we have done before. You should also register
the URLSs of myapp in the project’s URLCONF as done earlier.

An object of MongoClient class in PyMongo provides the handle to
your MongoDB instance. To set up the connection, you need the hostname,
port number, and other optional parameters if needed.

from pymongo import MongoClient
client = MongoClient(host="localhost', port=27017)

To create a new MongoDB database on the server, use the newdb
property:
db=client.newdb

171

CHAPTER5 DJANGO: USING DATABASES

We can now refer to this database with the db object. Create a Books
collection in this database with the following statement:

col=db['books"]
Put all this code in the models.py module in the app’s package folder.

from pymongo import MongoClient
client = MongoClient()
db=client.newdb

col=db['books"]

Insert Document

Let us write a simple view that uses the collection object and adds a book
document with its insert_one() method. The document is a dict object,
which PyMongo converts in a BSON document.

from django.shortcuts import render

Create your views here.

from django.http import HttpResponse

from .models import col

def addbook(request):
bl = {"id":1, "title": "Decoupled Django",
"author":"Gagliardi", "price":3874, "publisher":"Apress"}
col.insert one(b1)

return HttpResponse("Document added")

To be more generic, and more user-friendly, render a template that
presents a form for the user to fill. The form data is then used to insert a
new document. Modify the addbook () function accordingly.

172

CHAPTER5 DJANGO: USING DATABASES

def addbook(request):
if request.method=="POST":
data = request.POST
id = data["id"]
ttl = data["title"]
auth = data["author"]
price = data["price"]
pub = data["publisher"]
book = {"id":id, "title": ttl, "author":auth,
"price":price, "publisher":pub}
col.insert one(book)
return HttpResponse("Document Added")
else:
return render(request, "book.html", {})

Retrieval

You can call the find_one() or find() method of the Collection object to
retrieve one or all the documents satisfying the filter criteria:

col.find(filter): Retrieves all the documents from
the database

col.find_one(filter): Retrieves a single document
from the database

Here, filter is a dictionary specifying the query to be performed.
PyMongo provides a number of filter operators to be used in these
methods:

$eq: Whether a field is equal to a specified value.
Equivalent to ==

$gt: Checks if a field’s value is greater than a speci-
fied value. Equivalent to >

173

CHAPTER 5

DJANGO: USING DATABASES

$gte: Corresponds to >= operator

$1t: Matches documents where a field’s value is less
than a specified value. Corresponds to < operator

$lte: Equivalent of the <= operator
$ne: PyMongo'’s equivalent of the != operator

$and: Combines multiple filter expressions using
logical AND

$or: Combines multiple filter expressions using
logical OR

$in: Emulates Python’s IN operator

$exists: Checks if a field exists in a document (true)
or not (false)

Let us implement some of these operators in the view functions. The

books () view retrieves all the books with the price greater than a specified

number in the books collection.

def books(request, price):
books = col.find({"price": {"$gt": price}})

1st=

for

[]

book in books:
Ist+="<h2>Title: {} \t Author: {} \t Price: {}</h2>".
format(book['title'], book['author'], book['price'])

return HttpResponse(lst)

The find() method returns a list of dict objects, each correspond-

ing to one document. Try using the URL http://localhost:8000/myapp/

books/3500. You can use a suitable template in earlier chapters to render
the list of books in an HTML table instead.

174

CHAPTER5 DJANGO: USING DATABASES

Similarly, the getbook () view function retrieves the document whose
ID is passed as the path parameter.

def getbook(request, id):
book = col.find one({"id":id})
return HttpResponse("<h2>Title: {} \t Author: {} \t
Price: {}</h2>".format(book['title'], book['author'],
book['price']))

PyMongo also supports update operation on the document, with the
update one() and update_many() methods. These methods need filter
criteria and the dictionary of updated values of the required fields. For
example, the statement

col.update one({'id': 1}, {'$set': {'price': 3000}})

updates the price of the book whose ID is 1.

Similarly, the delete_one() method removes a document that satisfies
the given filter criteria. This statement deletes a book authored by Alchin
from the books collection.

col.delete one({'$author': 'Alchin'})

You can add the appropriate view functions to perform the update and
delete operations. Have a look at the code in this book’s code repository
if needed.

You need to ensure that the views are properly matched with the
URL routes in the urlpatterns. For reference, the code for urls.py is
listed here:

from django.urls import path, include

from . import views

175

CHAPTER5 DJANGO: USING DATABASES

urlpatterns = [
path('',views.index,name="index"),
path('addbook/", views.addbook,
name="addbook "),
path("getbook/<id>/", views.getbook,
name="getbook"),
path("books/<int:price>", views.books,
name="books"),

]

This is, of course, a very brief account of the functionality of PyMongo.
You can refer to its official documentation to enhance your Django appli-
cation further.

MongoEngine

The Django ORM API that you learned earlier presents a layer of abstrac-
tion, mapping Python classes with the corresponding tables (relations) in
Django-supported relational databases instead of writing raw SQL queries.
SQLAIchemy does the same with all types of relational database - includ-
ing those not officially supported by Django. MongoEngine is the equiva-
lent of Python ORMs for MongoDB databases. Since a MongoDB database
is a collection of documents (and not relations), it is appropriately known
as an ODM (Object-Document Mapper).

MongoEngine is an open source Python package built on top of
PyMongo driver. Obviously it is one of the dependencies for MongoEngine
installation.

While in the current Django environment folder, install
MongoEngine with

pip install mongoengine

176

CHAPTER5 DJANGO: USING DATABASES

The current version of MongoEngine is “0.28.2) compatible with the
latest versions of Python.

Document Class

As mentioned earlier, a document in MongoDB is roughly equivalent to
arow in a relational database. Though a row (stored in a table) follows a
predefined schema very strictly, MongoDB doesn’t enforce a schema on
the documents in a collection.

Having said that, MongoEngine does allow you to define a schema
for the documents. If needed, the document schema can be dynamically
modified. You'll soon see how to do it.

The document schema is defined as a class that inherits the Document
class in MongoEngine. You can think of the Document as an equiva-
lent of Model in Django ORM, or DeclarativeBase in SQLAIchemy.
MongoEngine provides different Field types (IntField, StringField, etc.)
similar to the Field types in Django ORM and SQLAlchemy. Field objects
are the attributes of the Document class.

Here is a declaration of Book class that is a subclass of Document:

from mongoengine import *

class Book(Document):
title = StringField(max_length=50)
author = StringField(max_length=50)
price = IntField()
publisher = StringField(max_length=50)

If you remember, MongoDB automatically allocates a unique id, a
field of the ObjectId type to each document that acts as a primary key. If
you want, you can manage the primary key by yourself by specifying pri-
mary_key=True as a parameter to the required field.

177

CHAPTER5 DJANGO: USING DATABASES

class Book(Document):
bookId = IntField(primary key=True)
title = StringField(max_length=50)
author = StringField(max_length=50)
price = IntField()
publisher = StringField(max_length=50)

When the first document is saved, MongoDB creates the collection,
whose name is the same as that of the Document class. However, you can
change it. Add a meta attribute on your document, and set collection to the
name of the collection that you want your document class to use.

class Book(Document):
bookId = IntField(primary key=True)
title = StringField(max_length=50)
author = StringField(max_length=50)
price = IntField()
publisher = StringField(max_length=50)
meta = {'collection': 'Books'}

Connection

To interact with MongoDB, you need to establish a connection with it. To
connect your application with a local MongoDB server running on the
localhost, use the connect () function passing the name of the database as
an argument.

from mongoengine import connect
connect('mydb")

MongoEngine assumes that the mongod instance is listening to port
27017 and running on localhost. To provide the arguments explicitly, use
the following variation:

connect('mydb', host='127.0.0.1", port=27017)

178

CHAPTER5 DJANGO: USING DATABASES
A more general form of the connect () function is
connection = connect(db, username, password, host)

You can connect to the Atlas cluster also. Obtain the required connec-
tion string from the running cluster as done earlier.

connection = connect(db="mydb",
usernames="*¥¥¥k!
passwords= "kt host="mongodb+srv://
username:password@clustero.oh20x8g.mongodb.
net/?retryhWrites=true8w=majority")

Once the connection is established, you can simply construct a
Document object and call its save() method.

doc = Book(title="Decoupled Django", author=" Gagliardi ",
price=3874, publisher="Apress")
doc.save()

This results in the Books collection with a Book document in it, created
inside the mydb database on the currently running MongoDB server (or
the Atlas cluster if your connection points to it). You can verify it with the
MongoDB Compass app.

Using MongoEngine in a Django application is fairly straightforward.
Put the Document class (Book) in the models. py module.

from mongoengine import *

con = connect('mydb")

class Book(Document):
title = StringField(max_length=50)
author = StringField(max_length=50)
price = IntField()

publisher = StringField(max_length=50)
meta = {'collection': 'Books'}

179

CHAPTER5 DJANGO: USING DATABASES

Define a view function that retrieves the data from an HTML form and
uses it to populate the Book object. Call the save() method to cause the
document to be persistently saved in the database.

from django.shortcuts import render
def addbook(request):
if request.method=="POST":
data = request.POST
title = data["title"]
author = data["author"]
price = data["price"]
publisher = data["publisher"]
doc = Book(title = title, author = author, price =
price, publisher = publisher)

doc.save()

return HttpResponse("Document Successfully Added")
else:

return render(request, "book.html", {})

To fetch all the documents in the collection, use the objects property. It
returns a QuerySet.

documents = Book.objects

To refine the documents QuerySet, you can apply filtering criteria.
Instead of the traditional comparison operators, MongoEngine defines its
own query operators that are similar to what we used with PyMongo, with
a slight change in the syntax. PyMongo operators have a $ prefix (e.g., $1te
for less than or equal to). In MongoEngine, on the other hand, double un-
derscores prefix the operator (e.g., _ 1te). To obtain the books with price
greater than 3500, the statement would be

documents = Book.objects(price gt=3500)

180

CHAPTER5 DJANGO: USING DATABASES

To retrieve a single document that meets the given criteria, use the
get () method. The following statement would return a Book document
with the specified name of the author:

doc = Book.objects.get(author="Rubio")

Using these filter operations, you can modify the books () and get-
book () views that we defined while working with PyMongo.

DynamicDocument

The single most important difference between the MongoDB database
and the relational database, as was emphasized earlier, is the fact that the
MongoDB document is schema-less. In fact, it is one of the benefits of
MongoDB. However, the Document class is not different from the Model
in Django ORM. MongoEngine does provide another type of Document
class that allows storing documents with a variable number of fields in a
collection.

Let us create a DynamicDocument class as follows (just change the base
class in the previous definition):

class Book(DynamicDocument):
title = StringField(max_length=50)
author = StringField(max_length=50)
price = IntField()
publisher = StringField(max_length=50)
meta = {'collection': 'Books'}

Ensure that your application is connected to the MongoDB server.
Insert a book document as before:

doc = Book(title="Decoupled Django", author=" Gagliardi ",
price=3874, publisher="Apress")
doc.save()

181

CHAPTER5 DJANGO: USING DATABASES

The Books collection will have been created in the database.
Now, add another document with one extra attribute like year (for year
of publication):

doc = Book(title="Beginning Django", author="Rubio ",
price=3053, publisher="Apress", year=2017)
doc.save()

The two documents, with an unequal number of fields, will be found in
the Books collection.

[{
Il_idll: {
"$oid": "6677205a93b226b0ace10e21"

}s
"title": "Decoupled Django",

"author": " Gagliardi ",
"price": 3874,

"publisher": "Apress"

})
{
"id": |
"$0id": "6677213b93b226b0Oace10e22"
}J
"title": "Beginning Django",
"author": "Rubio ",
"price": 3053,
"publisher": "Apress",
"year": 2017
}

182

CHAPTER5 DJANGO: USING DATABASES

MongoEngine provides the update_one() method to modify the value
of a certain field.

Book.objects(name="Rubio").update one(set price=4000)

Similarly, to remove a document from the collection, simply call the
delete() method.

doc=MyBook.objects.get(author="Rubio")
doc.delete()

Use these inputs to provide suitable views in your Django application.

There’s a lot more to MongoEngine than what has been described here.
A number of useful Field types, signals, and a powerful search mechanism
are some of its important features. The reader is encouraged to explore
these and other features by referring to the official documentation of
MongoEngine.

There is, however, one major drawback of using PyMongo or
MongoEngine with your Django application. Neither of them works with
Django’s built-in apps such as admin and auth apps in the django.contrib
module, which primarily rely on a relational database. When you run the da-
tabase migration, the models required for these apps are propagated to the
database for which your Django project is configured. Note that we haven’t
used the MongoDB database in the DATABASES settings of the project.

The Djongo package overcomes this problem. With Djongo, you can
use the Django ORM terminology and still use the MongoDB database as a
backend.

Djongo

As mentioned earlier, though you can connect your Django app with a
MongoDB database with the PyMongo or MongoEngine libraries, Django’s
built-in apps (e.g., admin or auth app) are equipped to work with the

183

CHAPTER5 DJANGO: USING DATABASES

Django-supported relational databases only. If you need these apps in your
project, you will have to adapt a hybrid model - relational database for
built-in apps and MongoDB for the specific functionality of your project.

Djongo provides you the best of both worlds. You can continue to
define the data models by following Django ORM and use the MongoDB
database, but also for the built-in apps - that too with very little tinkering
with your project’s settings.

Technically speaking, Djongo is a SQL to mongodb query transpiler. It
basically translates SQL queries to MQL (MongoDB Query Language). You
will continue to define your models as per the Django ORM and call the
same functionality for performing CRUD operations as with any relational
database. With minimal changes to your project settings, you can ask your
project to use MongoDB as the backend database.

Start by installing Djongo:

pip install djongo

Add djongo along with the name of your app in the INSTALLED _
APPS list.

INSTALLED APPS = [
'django.contrib.admin’,
'django.contrib.auth’,
'django.contrib.contenttypes’,
"django.contrib.sessions’,
"django.contrib.messages’,
"django.contrib.staticfiles’,
'djongo’,

‘myapp’,

184

CHAPTER5 DJANGO: USING DATABASES

Replace the default DATABASES section in the project’s settings with

DATABASES = {
"default': {
"ENGINE': 'djongo’,
"NAME': 'djongodb',
"CLIENT': {
"host': 'mongodb://localhost:27017",

}

If you wish to host a database on a MongoDB Atlas cluster, use the fol-
lowing type of DATABASES configuration:

DATABASES = {

"default': {
"ENGINE': 'djongo',
"CLIENT": {
‘name': 'djongodb',
"host' :

"‘mongodb+srv://username:password@clustero.oh20x8g.mongodb.net/?
retryWrites=true8w=majority ',

'username': '<username>’,

'password' : '<password>'

And that’s all. When you tell your Django project that you are using
the Djongo driver for database handling, the Django ORM function calls
are converted into MQL queries, directed toward the MongoDB database
specified in the project. Run migrations as usual. All the models defined

185

CHAPTER5 DJANGO: USING DATABASES

by you as well as those needed for the INSTALLED_APPS such as admin,
auth, etc., will now be created in the MongoDB database referred to by the
NAME field above.

One of the significant drawbacks of Djongo is that it simply converts
SQL queries emitted by Django ORM API to MongoDB’s own query lan-
guage, without allowing you to use MongoDB'’s distinguishing features
such as dynamic schema. The development of Djongo is also very much
behind that of Django. Hence, Djongo may not work with your existing ver-
sion of Django. You may have to downgrade it to version 4.x. Also, the latest
version of PyMongo is not compliant - it needs version 3.7.2.

Summary

This chapter helps you to explore how you can use databases other than
those officially supported by Django. SQLAlchemy is a powerful and popu-
lar Python ORM. On the other hand, more and more real-time modern
applications need schema-less databases, one of the most popular being
MongoDB. In this chapter, you learned how to connect a Django applica-
tion with MongoDB with PyMongo, MongoEngine, and Djongo libraries.

186

CHAPTER 6

Advanced Django

In our journey thus far, we covered what can be called the core features
of Django - the model, view, and template. However, Django packs a lot
of other important features to make the application more robust, more
secure, and more comprehensive.

This chapter introduces some of the advanced features of Django. The
following topics are covered:

e Messages framework
e Authentication

e Security features

e Async support

e Reusable apps

e Django Debug Toolbar

Messages Framework

One of the important design considerations of a web app is to be able to give
the user a seamless and engaging experience by providing useful feedback to
their interactions. You often find the notifications such as “invalid username
or password” or “the Country field cannot be empty” popping up on the
screen, particularly after processing the user input such as an HTML form.

© Malhar Lathkar 2025 187
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_6

https://doi.org/10.1007/979-8-8688-1472-3_6#DOI

CHAPTER6 ADVANCED DJANGO

Django’s Messages framework is a handy mechanism to push certain
temporary messages when it is processing a client request and consume
them when a subsequent request is being processed. Django supports
cookie-based and session-based messaging. When pushing a message
in the queue, it is tagged on the basis of its priority level (DEBUG, INFO,
SUCCESS, WARNING, and ERROR).

The standard Django project template (initialized with the
startproject command) uses the session-based messaging by default.
However, you can choose the other alternative of cookie-based messaging
by modifying certain project settings.

Before we discuss the difference between the two, we need to
understand what are cookies and what is a session.

Cookies

Most web applications employ the cookies to store and retrieve a stateful
information regarding the client’s usage. The HTTP protocol, which is the
backbone of the World Wide Web, is a stateless protocol, which means the
web server doesn’t hold any information about the client when it processes
the request. Cookie acts as a workaround, in a bid to provide an enhanced
user experience. When the server sends its response to the client’s request,
it adds a small piece of text as a cookie along with the response body. This
text is stored on the client’s machine. When the same client sends another
request, this cookie is sent to the server as a part of the request body.

The set_cookie() method of the HttpResponse object lets you add
a cookie in the response body, before returning the response. Listing 6-1
shows how it is used.

Listing 6-1. setcookie() method

def setcookie(request):
response = HttpResponse("Cookie Set!")
response.set _cookie('username', 'admin')
return response

188

CHAPTER 6 ADVANCED DJANGO

On the subsequent request (as in Listing 6-2), this cookie becomes a
part of the HttpRequest object, which can be retrieved as:

Listing 6-2. getcookie() method

def getcookie(request):
user = request.COOKIES['username’]
return HttpResponse("Welcome back {}! ".format(user));

With certain additional arguments of the set_cookie() method, you
can control how the cookie behaves. For example, max_age states for how
long the cookie should stay in the client’s machine. Similarly, the secure
argument if set to True restricts the cookies to be passed only when a
request is made with the https scheme.

Moreover, calling the delete cookie() method on the response object
will remove the cookie from the response.

Sessions

The time duration between logging in and logging out of a web application
is called a session. The server stores one or more data values during the
session and releases them when the session is terminated.

Django uses the sessions as another way to store the stateful information
of the client. The session data is usually stored in the site database, although
you can configure Django to store the session data in cache, or files.

The default Django project structure created by the startproject
command already has the session handling capability enabled, by
including django.contrib.sessions in the INSTALLED_APPS. If not,
make sure the app is added.

INSTALLED_APPS = |
...
'django.contrib.sessions’,
#o...

189

CHAPTER6 ADVANCED DJANGO

Also, the MIDDLEWARE list in the project’s settings.py file should
contain the SessionMiddleware.

MIDDLEWARE = [
...
'django.contrib.sessions.middleware.SessionMiddleware’,
...

The session data is available as a dict-like attribute of the HttpRequest
object. You can do all the normal dictionary operations such as adding or
removing keys from the dictionary. Most of the time though, you'll need to
set a session variable or retrieve its value inside the views.

Here is how you can add a key in the session attribute:

request.session['username'] = 'admin’
On the other hand, retrieve the value of a session key by using:
user = request.session['username’]

Occasionally, you may want to remove a certain key from the session
dictionary:

del request.session['username’]

Note that this raises KeyError if the given key isn’t already in the session.

Activating Messaging

As mentioned earlier, the messaging support is enabled in Django’s default
project template settings. To confirm, check if django.contrib.messages
isincluded in the INSTALLED_ APPS list.

190

CHAPTER6 ADVANCED DJANGO

INSTALLED APPS = [
#
'django.contrib.messages’,
#

Another requirement already fulfilled by default is the inclusion of
SessionMiddleware and MessageMiddleware in the MIDDLEWARE list of
the project’s settings.

MIDDLEWARE = [
#
"django.contrib.sessions.middleware.SessionMiddleware’,
#
"django.contrib.messages.middleware.MessageMiddleware',
#

The order of these two middleware classes is important. The
SessionMiddleware must appear before MessageMiddleware.

Messages are pushed inside a view that Django executes in response
to a certain request, and they are retrieved by the template that is rendered
by the next client request. Hence, the context_processors attribute of the
TEMPLATES setting should be properly configured by making sure that the
context_processors.messages is included (shown in bold letters):

TEMPLATES = [
{
"BACKEND': 'django.template.backends.django.
DjangoTemplates’,
#
"OPTIONS': {
'context_processors': [

191

CHAPTER6 ADVANCED DJANGO

#)
'django.contrib.messages.context_processors.
messages',
])
}J
})

Storage Backends

The handling of messages by your Django project depends on for which
storage backend it is configured. The django.contrib.messages package
defines three storage classes as follows.

The storage.session.SessionStorage class stores all messages
inside of the request’s session. To use this backend, your project needs to
have contrib.sessions app in the INSTALLED_APPS.

The storage.cookie.CookieStorage class stores messages in a cookie
to make them available across requests. However, the cookie data size
cannot exceed 2048 bytes.

Django uses storage.fallback.FallbackStorage by default. It
first uses CookieStorage but switches to the SessionStorage backend
if the messages could not be fit in a single cookie. It also depends on the
contrib.sessions app.

To override Django’s default storage backend, you need to define
MESSAGE_STORAGE in the project’s settings. To set the CookieStorage
class as the backend:

MESSAGE_STORAGE = "django.contrib.messages.storage.cookie.
CookieStorage"

192

CHAPTER 6 ADVANCED DJANGO

Adding Messages

Once enabled, Django’s messaging API is very easy to use. The messages
class of django. contrib app (which has been included in the INSTALLED _
APPS) provides the add_message() method.

add _message(request, level, message, extra tags='", fail
silently=False)

The first argument is the HttpRequest object, which is provided by
the view from inside which a message will be added. Django classifies
the messages on the basis of priority levels (DEBUG, INFO, SUCCESS,
WARNING, and ERROR); one of these is the second argument. The
third one is the actual message string to be added. The other arguments
are optional. If you set fail silently to True, Django suppresses the
MessageFailure error to be displayed.

For example, you may call the add_message() methods from a certain
view as in Listing 6-3.

Listing 6-3. add_message() method

from django.contrib import messages

messages.add_message(request, messages.SUCCESS, "Record updated
successfully")

The messages class also defines a set of convenience methods, each
matching with the predefined message levels as

messages.debug(request, "Counter: %s" % count)
messages.info(request, "Your free trial ends today")
messages.success(request, "Address updated.")
messages.warning(request, "Your password is weak")
messages.error(request, "File will be deleted.")

193

CHAPTER6 ADVANCED DJANGO

Fetching Messages

The messages pushed in the queue while processing one request are
available for consumption in the view function that Django invokes when
it receives the next request. If the view renders a template, the {% messages
%} tag presents the collection of available messages. Mostly, the messages
are flushed out with the help of the template syntax as shown in Listing 6-4.

Listing 6-4. Fetching messages

{% if messages %}

{% for message in messages %}
<1i>{{ message }}</1i>
{% endfor %}

{% endif %}

This template code renders the messages in the form of an unordered
list. However, you may format it as required. You can even use conditional
template tags {% if %} and {% endif %} to filter a particular type of
messages to be displayed (for instance, you may want only the error
messages).

Let us test Django’s messaging functionality with the help of a simple
example. You need to add the above template code in the HTML page that
renders a basic login form (index.html as in Listing 6-5), posting the form
data to itself.

Listing 6-5. index.html

<form class="modal-content animate" action="" method="POST">
{% csrf _token %}

<div class="container">

<label for="username">Username</label>

194

CHAPTER 6 ADVANCED DJANGO

<input type="text" placeholder="Enter Username"
name="username">

<label for="password">Password</label>
<input type="password" placeholder="Enter Password"
name="password">

<input type="submit" value="Login">
</div>
</form>

The index() view renders this form when the user visits its mapped
URL. On submitting, the function pushes an error message if either the
username or password (or both) is not entered, as also when the username
is one of the reserved usernames and stays on the login page. Otherwise,
Django pushes a success message to be consumed by a suitable template
which the success () view renders. A warning message is also added to
the message queue if the password is less than nine characters. Listing 6-6
shows the index view function.

Listing 6-6. index view

from django.http import HttpResponse
from django.contrib import messages

def index(request):
if request.method == 'POST':

name = request.POST.get("username"

password = request.POST.get("password")

if name =="" or password =="":
messages.error(request, "required")

if len(request.POST.get('password'))<9:
messages.warning(request, "Weak Password")

if name in ['admin', 'manager', 'superuser']:
messages.error(request, "Username Not Available")

195

CHAPTER6 ADVANCED DJANGO

else:
messages.success(request, "Login Successful.
Welcome "+name)
return HttpResponse("success"

return render(request, "index.html", {})

Ensure that the views are properly wired to the corresponding
urlpatterns. The login form (refer Figure 6-1) opens in response to the
URL: http://localhost:8000/myapp/. Try entering one of the reserved
usernames with a shorter password.

2 @ [localhost:2000/myapp/ x | = o 2
< G Q (@ localhost:8000/myapp/ & A 9 th B |
| = |
' i
| Username

admin
Password

I

Figure 6-1. Login screen

Django responds with the error and warning messages, on top of the
login form (Figure 6-2).

196

CHAPTER 6 ADVANCED DJANGO

: @ [localhost:8000/myapp/ x + - o X
& O O

Weak Password

(D) localhost-8000/myapp/ L A & uh} [

Username
Enter Usermame

Password

Enter Password

Figure 6-2. Flashed message

In other situations, you should see the success page rendered with a
welcome message on top.

Authentication

Asyou learned earlier, Django’s admin interface is one of its prominent
tools. The Admin app is added to your Django project by default. With its
convenient and user-friendly interface, you can perform managerial tasks
such as creating users and assigning them roles.

The admin interface is built on top of the django.contrib.admin
module, which you can import into your own Django app and incorporate
the functionality in it. In most of the web applications, you find some of
its resources are available for all. However, some of the features can be
accessed by a registered user only. Hence, the application needs to let the
visitor register and log in. You can then restrict the access to any view only

to an authenticated user.

197

CHAPTER6 ADVANCED DJANGO

You already know how to create a superuser (using the command
python manage.py createsuperuser), log into the admin site with it, and
then create other users. The details of the users (name, password, groups
and the roles assigned to them, etc.) are stored in the User model defined
in the django.contrib.auth module. An elaborate API of this module lets
you very conveniently handle the authentication of a user.

Login and Logout

There are three main steps involved in the authentication mechanism.
First, call the authenticate() function by passing the username and
password (possibly entered via a login form) that returns the authenticated
User object.

from django.contrib.auth import authenticate
user = authenticate(username, password)

To log the authenticated user in, you need to add it to the current
session by calling the login() function.

login(request, user)

To log the current user out, simply call the logout(request) function,
which will pop out all the session data related to the logged-in user.

The registration of a new user is facilitated by a ModelForm named
UserCreationFormin the auth app. When rendered, it shows a Username
field (corresponding to the User model) and two password fields -
passwordl and password2. As the form is submitted, the validate
password() function checks if both of them match and the password meets
the stipulated criteria (such as it must not be less than eight characters,
that it can’t be entirely numeric, etc.). The mapped view then extracts the
form data and saves it to the User model.

198

CHAPTER 6 ADVANCED DJANGO

To demonstrate Django’s authentication functionality, start by building
a simple home page (as in Figure 6-3) that has links to let you log in and
register a new user.

: g lf"g localhost:8000/myapp/ x + - 2 c;

& = O Q () localhost:8000/myapp/ A Y W] .

Click here to Log_In

Click here to Register .
|

' Home page

Figure 6-3. Home page

The login hyperlink invokes the login user() view (the code in
Listing 6-7) and renders a login form. When submitted, Django parses the
name and password fields and calls the authenticate() function.

If the user is authenticated, the success message appears on the home
page; otherwise, an error message is displayed.

Listing 6-7. login view

from django.shortcuts import render, redirect
from django.contrib.auth import authenticate, login, logout
from django.contrib import messages
def login user(request):
if request.method == "POST":
username = request.POST['username’]
password = request.POST['password']
user = authenticate(request, username=username,
password=password)

199

CHAPTER6 ADVANCED DJANGO

if user is not None:
login(request, user)
messages.success(request, "Login successful. Hello
{}".format(user))
return redirect('index")

else:
messages.error(request, ("There Was An Error
Logging In, Try Again..."))
return redirect('login')

else:

return render(request, 'login.html’', {})

It is assumed that a superuser for the admin site has already been
created with admin as the username. Follow the login link from the home
page, and use the admin credentials to be filled in the form. The home
page after successful login appears as shown in Figure 6-4.

M (3 localhost:8000/myapp/ x 4+ - o x
C Q

() localhost:8000/myapp/ 2 AN 9 0 as2 I

i Click here to Log_ out

| Click here to Register

Home page

Figure 6-4. Login message

The Listing 6-8 shows the code for log_out() view, which when called
when the logout link is accessed, simply removes the current user from the

session and pushes the message, letting the user know that they have been
logged out.

200

CHAPTER 6 ADVANCED DJANGO

Listing 6-8. logout view

def logout user(request):
logout(request)
messages.info(request, "You Were Logged Out!")
return redirect('index')

The home page now appears as shown in Figure 6-5.

M (3 localhost:8000/myapp/ x 4+
C Q

() localhost:8000/myapp/ Ay o i

i Click here to Log In

| Click here to Register
|

Home page

Figure 6-5. Logout message

You must have noted that link to the login changes to logout when
a user logs in and back to login link when it logs out. This is effected by
adding the template code shown in Listing 6-9 in the index.html page.

Listing 6-9. index.html

{% if messages %}

{% for message in messages %}

<p>{{ message }}</p>

{% if message.level == 25 %}

Click here to Log out
{% else %}

Click here to Log In

201

CHAPTER 6 ADVANCED DJANGO

{% endif %}
{% endfor %}
{% else %}
Click here to Log In
{% endif %}

<a href={% url "register
<h2>Home page</h2>

%}>Click here to Register

New User

As mentioned earlier, we’ll render the UserCreationForm to accept the
username and password from the visitor to create a new User object,
by saving the validated form. Add the register user() view (asin
Listing 6-10) in views.py code.

Listing 6-10. register view

def register user(request):
if request.method == "POST":
form = UserCreationForm(request.POST)
if form.is valid():
form.save()
username = form.cleaned data['username’]
password = form.cleaned data['passwordi’]
user = authenticate(username=username,
password=password)
login(request, user)
messages.success(request, ("Registration
Successfull"))
return redirect('index")

202

CHAPTER 6 ADVANCED DJANGO

Note that the newly added user is authenticated and logged in as well,
before returning to the home page. The /register route displays the form
(Figure 6-6) for the visitor to fill.

> |
| z @ [3 localhost:8000/myapp/register/ X -|- - O X |
& @ o’ (@ localhost:8000/mya... £ A ¢ M - @
I: - ‘ |
Register |
Username:
manager

Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
Password:

Your password can't be too similar to your other personal information.

Your password must contain at least 8 characters. .
Your password can't be a commonly used password.

Your password can't be entirely numeric. |

Password confirmation:

|
|
|
Enter the same password as before, for verification.
|

Submit
v

Figure 6-6. UserCreationForm

(N

Log into the admin site and confirm that the newly registered user
appears in the list of objects (shown in Figure 6-7) in the User model.

203

CHAPTER6 ADVANCED DJANGO

i = o x
g @ D Select user to change | Django = X —+
< G Q () localhost:8000/admin/auth/user/ AN 7 M L) |
| D I
|
Q Search
w Go
£les
USERNAME a EMAIL ADDRESS FIRST NAME LAST NAME STAFF STATUS

] admin admin@admin.com)

| manager ') |

Figure 6-7. Admin home page

Note the cross mark against the new user. You can accord the manager
a staff status by setting the is_staff property to True. Furthermore, you
can also inherit the UserCreationForm and include the other fields first_
name, last_name, and email, available to the User model in the auth app.

@login_required()

Now that you have defined a view function that handles the user login
and a route mapped to it, let us see how you can restrict access to any of
the views only if an authenticated user has been logged in. Putting the
login required() decorator at the top of a view proves quite effective for
this purpose. How does it work?

When a route mapped to such a protected view is visited, Django
checks whether the session consists of the logged-in user’s information.
If yes, Django executes the view normally. If not, it redirects to the view

204

CHAPTER 6 ADVANCED DJANGO

designated as a login view while passing the current absolute path in the
query string. You need to either have a LOGIN_URL variable set to the URL
route corresponding to the login view or specify the login_url parameter
to the login required decorator itself.

To check how it works, add a new view (Listing 6-11) in the app’s views.
py code.

Listing 6-11. login_required decorator
from django.contrib.auth.decorators import login required

@login required(login url="../login/")

def myview(request):
return HttpResponse("This message will be displayed only if
a user is logged in")

Remember, you should also add a URL pattern to wire up this view to a
URL route, for example:

urlpatterns = [

path('myview/', views.myview, name="myview"),

If you visit the myview/ URL route in the browser, two things happen.
One, the browser is redirected to the login_url (which in this case is
login/) and it appends a query string with next as the key and the current
path as the value. The next field tells Django which view to execute after
the user is authenticated and logged in.

So the URL http://localhost:8000/myapp/myview/ (with no
user currently logged in) is entered, the browser goes to http://
localhost:8000/?next=/myapp/myview/, and the login page opens
up, as shown in Figure 6-8.

205

CHAPTER6 ADVANCED DJANGO

| .: © [localhost8000/myapp/myview/ X = = = 8 #
<« O Q (@ localhost8000/myapp/login/fnext=/myapp/myview/ A ¢y] S C |
a
Username
Enter Username
Password
Enter Password

‘
|
|

Figure 6-8. Login page on redirect

As you would expect, after the login credentials are verified, the

myview() function gets called.

Another approach to restrict the view access only if a user has an active
session is using the request.user.is_authenticated variable (refer
Listing 6-12) - it will be True if a session is active.

Listing 6-12. is_authenticated

def myview(request):
if request.user.is authenticated:
return HttpResponse("This message will be displayed
only if a user is logged in")
else:
return redirect("login")

206

CHAPTER 6 ADVANCED DJANGO

Security Features

While Django’s authentication and authorization framework lets you
control the access to the critical views in your application, it doesn’t
necessarily ensure that it is secured against various types of hacking
attacks. Django API does have adequate provisions to counter some of
the deadliest types of attacks that the hackers often indulge in. In this
section, you will explore how Django tries to address certain security
vulnerabilities.

CSRF

Earlier in this book (Chapter 4), you came across a template tag {% csrf_
token %} being used while building the form templates. This template
tag is used inside an HTML form, especially having POST as its request
method. You must have wondered what the role of this tag is. In this
section, you'll get to know its purpose.

The term “CSRF” is an acronym for Cross-Site Request Forgery. One of
the common types of attacks on the security of a web application, CSRF is
known by various names - XSRF, one-click attack, etc.

Simply put, CSRF is an attack in which the perpetrator forces an
already-authenticated user of the application to unknowingly submit a
request that is intended to execute a potentially harmful instruction that
will alter the state of a resource on the server. In other words, a malicious
user executes certain harmful actions using the credentials of another user
without the latter’s knowledge.

The result of a CSRF attack may range from deleting one or more
resources (such as objects in a model), resulting in change of user’s
password and thereby them losing the access, to even executing a financial
transaction that siphons out the money from the user’s bank account.

207

CHAPTER6 ADVANCED DJANGO

Fortunately, Django has a very easy-to-use provision to tackle
the CSREF attacks very efficiently. First, you need to see that the CSRF
middleware is enabled in the MIDDLEWARE setting (usually it is enabled
by default, whenever a Django project is initialized with the startproject
command).

MIDDLEWARE = [

)

"django.middleware.csrf.CsrfViewMiddleware',

)

You also must see to it that the CSRF middleware appears before any
view middleware. Secondly, whenever you are designing a form template
with POST request, the csrf_token template tag is put inside the <form>
and </form> tags.

<form method="post">
{% csrf token %}
//other form elements
</form>

How does this anti-CSRF mechanism work?

The CsrfViewMiddleware causes the server to send a CSRF cookie with
arandom secret value this cookie within the response.

As aresult of the csrf_token template tag, the HTML form is rendered
with a hidden input field with its name as “csrfmiddlewaretoken” and
value as the CSRF cookie.

<input type="hidden" name="csrfmiddlewaretoken" value="hYxmyDcC
3PqV30YJJawPmt30AqlScfeZU9uTt4aANNt Je4Ufx3pssjUF1cxeQUIE">

When the form is submitted, Django checks if it contains the hidden
field and its value matches with the cookie. If not, the user will get a 403
error, as the Figure 6-9 shows.

208

CHAPTER 6 ADVANCED DJANGO

g) [403 Forbidden x = = =
< C Q () localhost:8000/firstapp/addbook A g]
- A

Forbidden (03

CSRF verfication failed. Request aborted.

Help

Reason given for failure:

CS5RF token missing.

Figure 6-9. CSRF failure

XSS

Web applications often find themselves vulnerable against Cross-Site
Scripting (XSS) attacks. Hence, you as a Django developer should be aware
of how XSS attacks work and how to mitigate the threats.

The XSS attack involves luring the user to click a link that executes a
harmful JavaScript code in the user’s browser. The JavaScript code thus
injected may be intended to fetch the personal data of the user, hijack the
current session, or even a complete takeover of the system.

The use of Django templates does provide you a good enough protection
against XSS attacks by escaping certain characters that are potentially
dangerous to HTML. Imagine a form collecting certain input from (e.g.,
name) the user and passing it as the context to a template. The template
code uses it to render a Hello message as

Hello {{ name }}

As aresult, if the form input is Admin, the message would be Hello
Admin. However, if the form input is something like

<script>alert('Admin')</script>

209

CHAPTER 6 ADVANCED DJANGO

this will cause the HTML script to include the JavaScript, resulting in the
alert message popping up on the browser. (In this case, the alert message
may be harmless, but it could have been any JavaScript function capable of
performing more damaging actions!) Thankfully Django doesn't let this
happen, because of the automatic HTML escaping feature of Django
Template Language. Since the autoescape tagis ON by default

e <isconverted to <

e <isconverted to >

o ‘(single quote) is converted to '

e “(double quote) is converted to "

As aresult, the above JavaScript code will become
81t;scriptdgt;alert('Admin');81t;/scriptdgt;

The XSS attack is thus averted.

There is, of course, a provision to turn the automatic escaping feature
off. You can use the safe filter to disable escaping for a particular template
variable, such as

Hello {{ name | safe }}
You can also turn autoescape off for a block of template code:

{% autoescape off %}
Hello {{ name }}
{% endautoescape %}

However, this paves the way for some harmful JavaScript to be inducted
in your application. Hence, it is advised that you avoid turning autoescape
mode off unless it is absolutely necessary. You should remember that storing
HTML in the database should also be avoided as far as possible, especially if
that HTML is retrieved through a query and rendered to the browser.

210

CHAPTER6 ADVANCED DJANGO

SQL Injection

If you use Django ORM for all your database handling requirements, you
are more or less sufficiently protected against the SQL injection attacks. It
is only if you need to execute SQL queries directly from inside your views
that your application becomes vulnerable.

SQL injection is also one of the commonly employed techniques by the
hackers to intrude into the system. The attacker uses the input fields in a form
to inject malicious SQL commands, which affects the way your application
behaves. The results may be disastrous, leading to information leaks and
unauthorized access, or even it may result in erasing all the data.

Assume that a user is asked to enter their credentials, which in turn are
used to form a SQL query to authenticate the user. The data in the form
elements is stored in the two variables: username and password.

qry = "SELECT * FROM users WHERE username='"+username + "' AND

password=""+password+"";

Assuming that the form inputs are ‘test’ and ‘abcd1234’ for username
and password, respectively, the query string would become

SELECT * FROM users WHERE username='test' AND
password="abcd1234";

In this case, the query will return a row matching with the inputs.
However, think of a case where the user inputs abcd1234 or 1=1 in the
password field of the login form. The SQL query then becomes

SELECT * FROM users WHERE username='test' AND
password="abcd1234 or 1=1';

This string is a valid SQL query. However, the condition or 1=1
causes it to evaluate as TRUE always irrespective of the inputs. As a result,
the intruder gains access to the system, which can further cause
potential damage.

211

CHAPTER6 ADVANCED DJANGO

So what are the measures to be taken to avert such attacks? Let us
explore the available options.

First and foremost, use Django’s built-in authentication mechanism to
validate the user. Use the authenticate() function in the django.contrib
package as explained earlier.

from django.contrib.auth import authenticate

username = request.POST['username’]

password= request.POST['password']

user = authenticate(username=username , password=password)

Second, if you really need to use dynamically constructed SQL queries,
always use parameterized queries. Instead of directly embedding user
input into SQL queries (as done in the earlier example), create a query
string with the ? symbol as the placeholders, such as

qry = "SELECT * FROM customers WHERE username = ? AND
password = ?"

The execute() method of a DBI-compliant module for any database
will dynamically construct a query by inserting the values of the variables
from the tuple parameter.

cursor = conn.cursor()
cursor.execute(qry, (username, password))

The ? placeholders in the string are replaced with the respective
parameter values, and the safely constructed query is executed. Thus, SQL
injection attempt is thwarted.

Last but not the least, you should use Django’s ORM as much as pos-
sible. In fact, Django ORM internally uses SQL parameterization to provide
built-in protection. Hence, Django’s querysets are protected from SQL
injection.

212

CHAPTER 6 ADVANCED DJANGO

Let us also discuss some of the additional security considerations. One
of the aspects is the SECRET_KEY in your project. While in the DEBUG
stage, the secret key is stored in the SECRET_KEY variable in the settings.
py file.

SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'django-insecure-n+7m3d+e_9wpe=n-+pz%3w-
g=3(0tws#gdi%6 9r"!v!yzbubp'

However, as the application is ready for launch on a public server, it
should be stored using environment variables. Remove the KEY information
from this module. Generate a strong, random SECRET_KEY using a secure
method. Copy your secret key from your settings.py file and paste it into
the .env or .venv file, and then make it available to the project’s settings by
including

SECRET KEY = str(os.getenv('SECRET KEY"))

Deploying your Django application behind HTTPS provides better
security. To enable HTTPS support, set SECURE_PROXY_SSL. HEADER
parameter to True, or else, your application may become vulnerable
against CSRF attacks. You must also set SECURE_SSL._ REDIRECT to True.
Setting SESSION_COOKIE_SECURE and CSRF_COOKIE_SECURE settings
to True is also highly recommended.

async Views

As you learned earlier (Chapter 1, section “Asynchronous Processing”),
versions of Django from 3.1 onward support writing asynchronous views.
Your Django application needs to be run on an ASGI server like Uvicorn or
Daphne. The async views still work with the WSGI server, the one included
in Django API itself. However, their efficiency is limited considerably.

213

CHAPTER 6 ADVANCED DJANGO

Defining async views is not much different than defining a coroutine.
You need to add async before the def keyword. If your application has
class-based views, the HTTP methods, such as get() and post(), should be
defined as async def.

Let us start by defining a simple async view that returns Hello World
message.

from django.http import HttpResponse
async def index(request):
return HttpResponse("<h2>Hello, World</h2>")

You can, of course, execute this view by visiting its mapped URL while
the Django server is invoked with the runserver command. However, we
would like to use an ASGI-enabled server. In Chapter 1, you used Daphne.
Here we shall run this application with Uvicorn.

Install Uvicorn in the current Django environment:

pip3 install uvicorn

Use the command-line interface of Uvicorn to launch the server. Note
that the command-line syntax is very similar to that of Daphne:

uvicorn asyncproject.asgi:application --reload

The terminal log shows that the server is up and running at port 8000
of the localhost.

INFO: Will watch for changes in these directories:
['D:\\workspace\\asyncproject']
INFO: Uvicorn running on http://127.0.0.1:8000
(Press CTRL+C to quit)
INFO: Started reloader process [19276] using StatReload
INFO: Started server process [19296]

214

CHAPTER 6 ADVANCED DJANGO

INFO: Waiting for application startup.
INFO: ASGI 'lifespan' protocol appears unsupported.
INFO: Application startup complete.

You can visit the URL route mapped to the index view to get the Hello
World message in the browser.

Let us add some really asynchronous activity in the views. First, install
the HTTPX package in the current environment.

pip3 install httpx

The HTTPX library is an asynchronous HTTP client. It offers a fully
asynchronous API for making HTTP requests and allows HTTP operations
to be performed asynchronously. However, you can also make synchro-
nous calls also with it.

Use the AsyncClient class in HTTPX for asynchronous requests.

import httpx
async with httpx.AsyncClient() as client:
response = await client.get("https://httpbin.org/")

httpbin.org is an open source HTTP request and response service that
is helpful to test and debug HTTP requests and responses.

This async call is made from inside an async helper function that calls
a sleep() function asynchronously and also makes a GET call on httpbin.
org. When the function is called by some async view, Uvicorn goes ahead
with the GET call to httpbin.org while the awaitable sleep() function is
run. Listing 6-13 shows the async_call() function.

Listing 6-13. async view

async def async_call():
await asyncio.sleep(10)
async with httpx.AsyncClient() as client:

215

CHAPTER 6 ADVANCED DJANGO

response = await client.get("https://httpbin.org/")
print("Response From httpbin: ", response)

print ("async call completed..")
Let us call this function from an async view:

async def async_view(request):
loop = asyncio.get event loop()
loop.create task(async_call())
return HttpResponse("Non-blocking HTTP Response™)

When you visit the URL that is mapped to this view (“async/” in this
case), Django immediately renders its HTTP response to the browser
(Non-blocking HTTP Response) while the async_call() function executes
asynchronously.

On the terminal, you should get the output as

INFO: 127.0.0.1:52590 - "GET /myapp/async/ HTTP/1.1" 200 OK
Response From httpbin: <Response [200 OK]>
async call completed..

It can be seen that the view’s response is rendered first, followed, after
the sleep time, by the response from httpbin.org service.

To compare this with the synchronous behavior, define another helper
function (refer Listing 6-14):

Listing 6-14. sync view with helper function

def sync _call():
time.sleep(10)
response = httpx.get("https://httpbin.org/")
print("Response From httpbin: ",response)
print ("sync call completed..")

216

CHAPTER 6 ADVANCED DJANGO
Invoke this from inside a normal view:

def sync_view(request):
sync_call()
return HttpResponse("Blocking HTTP Response")

The “sync/” URL route that takes the server to this view first performs
the GET call to httpbin.org. After its response is obtained, the view
response is then rendered.

Response From httpbin: <Response [200 OK]>
sync call completed..
INFO: 127.0.0.1:52591 - "GET /myapp/sync/ HTTP/1.1" 200 OK

Adapter Functions

Django API provides a couple of adapter functions in the asgiref.sync
module. These functions act as a bridge between the synchronous and
asynchronous context.

async_to_sync(): Give an asynchronous callable (coroutine) as an
argument to this function. It returns a synchronous wrapper around it. You
can then call synchronous code within an asynchronous context.

To use any of Django’s synchronous functions, such as render(), from
an async view, you can wrap them using async_to_sync.

sync_to_async(): A synchronous function goes as an argument to this
function and returns an asynchronous wrapper around it so that you can
call asynchronous code within a synchronous context. Use it especially
when you have an existing synchronous function and you want it to be
used within an async context or when you need to call async functions
from synchronous Django code.

217

CHAPTER6 ADVANCED DJANGO

async QuerySets

Django has extended the async capability to run ORM queries also. All
QuerySet methods that you used earlier have an a-prefixed asynchronous
counterpart. For example, the get () method now becomes aget () and
delete() needs to be replaced by adelete() in async context. For example:

book = await Book.objects.filter(author="Alchin').afirst()

returns the first occurrence of the object satisfying the given condition.
Instead of using for statement for iterating over a queryset, use
async for

async for entry in Book.objects.filter(name _startswith="A"):

Some queryset methods like get () and first() are blocking in nature.
Hence, they have sync counterparts with names starting with “a” - such as
aget() and afirst(). Others, like filter() and exclude(), are safe to be
run from asynchronous code.

Reusable Apps

So far, you have learned to create a Django app inside a project, with the
help of the startapp command. You can also have more than one app
in a project. But how about making your app reusable to other users?

In Django, a reusable app is a self-contained package that can be easily
plugged into different projects.

When you build a Django project, a number of Django apps are
installed by default. The admin app is an example, which is distributed
with the Django software itself. In addition, you can add other third-party
apps in your project. For that, you need to install it first and then include it
in the list of INSTALLED_APPS.

218

CHAPTER 6 ADVANCED DJANGO

You are familiar with installing a Python package from the PyPI repository
with the PIP utility and then using its functionality. A Django application is
also a package folder having models, tests, urls, and views submodules in
addition to static and template folders. How would you distribute your app
for others to download, install, and use?

Let us find out what are the steps involved. Assume that you have an
app called myapp in your Django project, which you have already put in the
INSTALLED_APPS list.

INSTALLED APPS = [
‘myapp",

Before proceeding, ensure that your Python environment has
setuptools installed. It is a Python module with which you can compile,
distribute, and install Python packages. If not already available, install the
same with the PIP command:

pip3 install setuptools

Coming back to your app, note that it is recommended to use a
django- prefix for package name, to make your package as specific to
Django, and a corresponding django_ prefix for your module name. So
move the myapp app folder from your project to the django-myapp folder
and rename the myapp folder itself to django_myapp.

Open the django_myapp/apps.py file and set the name attribute of
MyappConfig class to django_myapp as shown here:

from django.apps import AppConfig

class MyappConfig(AppConfig):
default auto field = 'django.db.models.BigAutoField'
name = 'django_myapp'
label = 'myapp’

219

CHAPTER6 ADVANCED DJANGO

Now you need to create some new files in the package folder, i.e.,
django-myapp folder.

Create a README.rst file, which essentially contains the technical
documentation of how to install and use your app.

Also putin a LICENSE file, a text illustrating the terms of use. Most
Django apps are distributed under BSD license; however, you are free to
choose any.

The setup.cfg is a configuration file used by the setuptools packaging
library. It specifies the metadata of the app including the version, the
license type, author’s details, etc. It also defines the desired versions of
Python and Django, also certain dependencies if any. Here is an example
of setup.cfg:

[metadata]
name = django-myapp
version = 0.1
description = An example Django app
long_description = file: README.rst
url = https://www.example.com/
author = Your Name
author _email = yourname@example.com
license = BSD-3-Clause
classifiers =
Environment :: Web Environment
Framework :: Django
Framework :: Django :: 5.0
Intended Audience :: Developers
License :: OSI Approved :: BSD License
Operating System :: OS Independent
Programming Language :: Python :: 3 :: Only
Topic :: Internet :: WWW/HTTP
Topic :: Internet :: WWW/HTTP :: Dynamic Content

220

CHAPTER 6 ADVANCED DJANGO

[options]
include_package data = true
packages = find:
python requires = >=3.10
install requires =

Django >= 4.2

Finally, create a setup.py file. It simply invokes the setup() function
from the setuptools module. The setup() function makes use of the
configuration details in the setup.cfg file.

from setuptools import setup
setup()

While building the package, the setup() function copies only the Python
modules and subpackages. If you need to include any other assets, such as
the templates and static files, you should also provide a MANIFEST.in file.

include LICENSE
include README.rst
recursive-include django myapp/static *

With all the prerequisites in place, you are now in a position to build
the package, with the following command:

python setup.py sdist

Make sure that this command is run while in the django-myapp folder.
This will create a dist folder that holds the django_myapp-0.1.tar.gz file.
The activity log in the terminal goes something like this:

running sdist
running egg info
creating django myapp.egg-info

221

CHAPTER6 ADVANCED DJANGO

adding license file 'LICENSE'

writing manifest file 'django myapp.egg-info\SOURCES.txt'
running check

creating django_myapp-0.1

creating django myapp-0.1\django myapp

creating django myapp-0.1\django myapp.egg-info
creating django myapp-0.1\django myapp\migrations
creating django myapp-0.1\django myapp\static
copying files . ..

Writing django myapp-0.1\setup.cfg

creating dist

Creating tar archive

To be able to use this app, install it with the PIP command:
pip3 install dist/django-myapp-0.1.tar.gz

Go back to your project now. Since you have removed the myapp app
folder, it won’t function properly now. Let us add the newly installed app in
the INSTALLED_APPS list:

INSTALLED APPS = [

"django_myapp.apps.MyappConfig',

You must also update the URLCONTF of your project by including the
urls of the django_myapp app:

from django.contrib import admin
from django.urls import path, include

222

CHAPTER 6 ADVANCED DJANGO

urlpatterns = [

path('myapp/', include('django myapp.urls')),

Incorporate carefully all the above steps, and launch the Django
development server and check if it works fine, which it should if everything
has been done accordingly.

Finally, you may want to make your package available for public
consumption by uploading it to https://pypi.org/ - the Python package
index repository. PyPI recommends using Twine, a utility for publishing
Python packages. So you need to install it first.

pip3 install twine

To publish your package, register with https://pypi.org/account/
register/ and log in with your credentials. From your package directory,

run the following command:
twine upload dist/*

Enter your username and password when prompted. After the upload
is finished, your package is now available on PyPI.

Django Debug Toolbar

One of the defining features of Django is its rich ecosystem of reusable
apps for different use cases. Most of them are available in an open source
domain; a comprehensive repository of Django apps is maintained at
https://djangopackages.org/. Incorporating such apps in your core
project helps you extend it with additional functionality without reinventing
the wheel.

223

https://pypi.org/
https://pypi.org/account/register/
https://pypi.org/account/register/
https://djangopackages.org/

CHAPTER6 ADVANCED DJANGO

You will learn about working with a couple of such third-party apps
during the course of this book. This section introduces one of the must-have
apps - Django Debug Toolbar.

As the name suggests, the objective of the Django Debug Toolbar is
to provide useful debugging information about Django web applications.
With the help of this app, you can easily identify and debug any problems
in your application. The debugging information is available in a collapsible
and customizable set of panels. For instance, the SQL panel shows details
of SQL queries, and the Setting panel lists of the parameters and their
value of various settings variables without looking at the source code of the
settings.py module.

Like any reusable app, you need to install it in the current Django
environment with the PIP utility.

pip3 install django-debug-toolbar
You can now add this app in the list of INSTALLED_APPS.
INSTALLED APPS = [

"debug_toolbar’,
‘myapp"’

To update the project’s URLCONF accordingly, add debug

toolbar’s URL:

from django.contrib import admin
from django.urls import path, include
import debug_toolbar.toolbar

urlpatterns = [

path("_debug /", include(debug toolbar.urls)),

224

CHAPTER 6 ADVANCED DJANGO
You also need to update the MIDDLEWARE list:

MIDDLEWARE = [
"debug_toolbar.middleware.DebugToolbarMiddleware",

)

Note that this app is intended for use in DEBUG mode, i.e., when
Debug parameter is set to True. In the development stage, the INTERNAL_
IPS setting must include the IP address of the localhost - 127.0.0.1.

INTERNAL_IPS = [
"127.0.0.1",

If properly installed, you should get to see a DjDT handle appearing on
the right-hand side of the browser (as in Figure 6-10) when you visit any of
the application routes, including the Admin page.

Site administration | Django site X +

O
Q) localhostB000/admin/ AU m EENC |

Django administration

WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG oUT (B

Site administration

AUTHENTICATION AND AUTHORIZATION

Recent actions
Groups + Add # Change

Users +Add 4 Change My actions

None available

Figure 6-10. Admin home page with a DjDT handle

225

CHAPTER6 ADVANCED DJANGO

The toolbar will be expanded when you click on the handle. A list of
debug panels will appear (Figure 6-11).

Site administration | Django site X +

O
Q @) localhost.8000/admin/ m S C |

¢ = * Hide »
Django administration e

WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD /Lo ouT (Toggle Theme

History

Site admimnistration

AUTHENTICATION AND AUTHORIZATION Versions
Groups + Add Change
Users + Add Change

Settings

Headers

Figure 6-11. Debug toolbar panels

The app is configured for showing some panels by default. Figure 6-12
shows the SQL panel that lists SQL queries along with the time taken to
execute and the link to explain the queries.

226

CHAPTER 6 ADVANCED DJANGO

s M [site administration | Django site X == - o x

o s I ® § @ localhost: v M [:] £

L

SQL queries from 1 connection

| default 2.14 ms (3 queries)

QUERY TIMELINE TIME (MS) ACTION
| 77 SELECT --- FROM Foi— 090 Sel Headers
"django_session” WHERE Expl
("django_session"."expire_date” Request
> 2024 7 04:07:58.189955'

AND
"django_session”."session_key sqL
'OfcidwvjsbhprixooiSx1113pvgom
5h77) LIMIT 21

| '+ SELECT -« FROM “auth_user = 050 Sel Static files
WHERE "auth_user” "id" = 1 Expl
LIMIT 21

| + SELECT --- FROM Tl Sel Templates
Nt b AMMER e

Figure 6-12. SQL panel

Click the Expl button and the browser “explains” the query, as the
Figure 6-13 shows.

s M [site administration | Django site X == - o x
|

< O Q) localhost:é

SQL explained

Executed SQL
SELECT "django_session”."session_key",
"django_session”."session_data”,
"django_session”."expire_date”

Versions |

FROM “django_session”
'WHERE (“django_session” "expire_date” > '2024-08-18 05:38:10.434279' AND
“django_session”."session_key" = 'OfcidivjsbhprSxooibnl 13pvgomS5hT’) Settings
LIMIT 21
Time
0.3485000052023679 ms

Database
default

ID PARENT NOTUSED DETAIL

4 0 0 SEARCH django_session USING INDEX sqlite_autoindex_d W
4 »

Figure 6-13. SQL explained

227

CHAPTER6 ADVANCED DJANGO

Other panels that display useful information are Settings (project
settings parameters and their values) and Request panels (Figure 6-14),
displaying the view executed, cookies, session data, etc.

a 1) [localhostB000/myapp/ ®x 4+ - o x
|
= G & () localhost8000/myapp/
Hide »
Request
Toggle Theme
View functi Arg t Keyword arg t URL name
myapp.views.index (9] i} index History
Cookies Versions
Variable Value :
'csrftoken’ 'dyThgJuiilD4NyKnggguQJIIbYSmHEY jh' Time
im
'sessionid’ '@fcidxvisbhprixooisx1113pvgomShT' 3
Session data Settings
Variable Value Headers
! _auth_user_backend' 'djange.contrib.auth.backends.ModelBackend'
' _auth_user_hash® "9544fcac2c5Tofudd14be6beTa3328878T4148dce53ab739%dc » Request
' _auth_user_id' 3 "~ index

< »

Figure 6-14. Request panel

You can work with this app extensively and explore how best you can
make use of its functionality.

Summary

Django is a full-stack web framework, packed with a lot of powerful features.
In this chapter, you learned how you can enhance your application by
including messaging and authentication. This chapter also discussed various
security provisions and how you can enable async support for Django
application. In the end, you explored the Django Debug Toolbar and how it
proves to be effective in debugging an application.

In the next chapter, we shall discuss one of the most popular Django
apps: the Django Rest Framework.

228

CHAPTER 7

REST API with Django

Django is a popular choice for building robust data-driven web
applications. In recent years, there is a growing trend of adding a web API
component to the application so that various frontend apps can interact
with the resources of the main applications. Django’s large ecosystem of
reusable apps offers tools, such as Django REST Framework and others,
that help you add the API functionality to a Django project.

In this chapter, you will acquaint yourself with the basics of REST. You
will also explore the important features such as serialization and
authentication offered by the Django REST Framework app. Toward the
end, this chapter introduces Django Ninja, a modern API building tool that
provides async support.

Here are the main topics to be covered in this chapter:

e Whatis API?

e REST architecture

o Serialization

e Django REST Framework

¢ Django Ninja

© Malhar Lathkar 2025 229
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_7

https://doi.org/10.1007/979-8-8688-1472-3_7#DOI

CHAPTER 7 REST APl WITH DJANGO

What Is API?

The term “API” (which stands for Application Programming Interface)

is a popular buzzword these days among the developer community. In
general, an interface is an entity where two different environments meet
and interact. A seaport, for example, can be considered as an interface
between a sea and the land. A receptionist that sits at the front desk of

an office is also an interface between the visitors and the office internals
such as employees, procedures, and information. A computer’s main unit
interacts with the peripheral devices such as keyboard, mouse, and printer
through different interfaces (serial, parallel, and USB interfaces).

The API is a software interface between two software applications. It
acts as a contract between the two, defining how one of them requests the
other for a certain information and how the other responds. In the IT-
enabled world around us, we routinely work with so many APIs. Different
payment apps act as an interface between the customers, banks, and
merchants. When we come across numerous websites letting you to log in
with the IDs of social media apps like Facebook, LinkedIn, etc., the APIs
exposed by them are at work (Figure 7-1).

230

CHAPTER 7 REST APl WITH DJANGO

: @ Medium: Read and write stories. X =~ = = a X
&~ [51 https//medium.com ® A Y m - B
>< Y
Welcome back.

(G Sign in with Google

(ﬁ Sign in with Facebook

<‘ Sign in with Apple

/

(X Sign in with X

S N NS NS NS

<E Sign in with email

No account? Create one

L)

Figure 7-1. Social login API

Different weather data aggregators collect data from various sources
such as satellites. Their APIs are consumed by weather apps and websites
that provide weather forecast over a certain period.

231

CHAPTER 7 REST APl WITH DJANGO

Over the years, various different protocols and specifications for
building API solutions have been employed by the developers. Let us have
a brief introduction of some of them:

SOAP: Simple Object Access Protocol is one of the
earliest protocols used for the development of APIs.
This protocol primarily uses XML to transmit data
over an HTTP or HTTPS connection. The requests
are composed with a fairly rigid set of rules of
WSDL - Web Services Description Language.

RPC: The Remote Procedure Call allows a program
to execute a procedure (function) residing on
another computer or server. RPC is used in a client-
server environment, where the client initiates a
request to the server, and the server executes the
request and sends the results back to the client.
The XDR (eXternal Data Representation) protocol,
on top of which the RPC is built, standardizes the
representation of data in remote communications.

gRPC: The Google Remote Procedure Call is a
specific implementation of RPC with a focus on
efficiency. Developed by Google, this open source
framework is designed for establishing efficient
distributed systems and makes it easier to build
microservices that enable communication between
applications.

REST: A de facto standard in today’s world of API-
first approach of web application development,
RElational State Transfer is more of a collection of
principles or guidelines rather than a protocol. REST
is an architectural style and a set of constraints that

232

CHAPTER 7 REST APl WITH DJANGO

define how the web services should interact with
each other. In this chapter, we shall be discussing
how to build a REST API with Django, specifically
with the Django REST Framework app. In the next
section, we shall discuss the REST architecture in
more details.

REST Architecture

As mentioned above, REST is the preferred approach to create stateless,
reliable web-based applications throughout the software industry. The
term “REST” was first coined by Roy Fielding in the year 2000, when he
was working on the creation of formal descriptions of HTTP standards. He
recommended an architectural style that entails certain constraints, which,
when implemented, provides advantages such as simplicity of a uniform
interface, scalability and portability of components, and more.

Given below is a brief overview of the six guiding constraints defined in
Fielding’s PhD thesis, “Architectural Styles and the Design of Network-
based Software Architectures.”

Uniform Interface

Unlike SOAP and RPC, which are action-based protocols, REST is a
resource-based architecture. A file, an image, or a row in a table of a
database, everything is considered as a resource on the server. A resource
on the server is identified by a Uniform Resource Identifier (URI).
When a client sends the request for a resource, it should contain all the
information required for retrieving and processing it.

This constraint requires that the client request should contain
everything that is required for it to be processed. The request must include
the URI of the resource and the action to be taken on it, along with some

233

CHAPTER 7 REST APl WITH DJANGO

additional data if required, especially if the request involves creating a new
resource. HTTP verbs (also known as HTTP methods) represent the action
to be performed. The HTTP methods POST, GET, PUT, and DELETE are
defined in the HTTP protocol specification and correspond to CREATE,
READ, UPDATE, and DELETE operations on the server’s resource.

Statelessness

The REST architecture requires that each request should be treated

as separate and independent transaction. Neither the details of a
client’s request nor the server’s response to it is stored on the server.
While this constraint makes it possible for the API to be scalable, it
also results in increased network traffic as a client may need to send
the same information again and again for subsequent transactions. As
a workaround, techniques such as cookies and session data are often
employed in designing RESTful APIs.

Client-Server

Due to the fact that the HTTP protocol that drives the REST principle is
also based on the client-server architecture, imposition of this constraint
on REST is obvious. As the main advantage of this, the client and server
can be scaled independently as required. This along with increased
flexibility and reliability are the other advantages.

Cacheability

REST allows the client to store server responses in a cache. By setting
appropriate response headers such as Cache-Control, Expires, and ETag,
the responses can be stored and reused. This feature reduces the network
traffic and improves the performance. For large-scale applications,
implementing caching can be complex. One also needs to ensure data
consistency by ensuring that stale data is not served.

234

CHAPTER 7 REST APl WITH DJANGO

Layered System

The client-server constraint takes care of the separation of client and
server-side functionality. You can further compose the server component
in more than one layer that are independent of each other. To ensure
improved scalability, the layers are configured to interact only with the
immediate ones and not any other.

Code on Demand

In any RESTful API, most of the time the server’s response is in serializable
data format such as XML or JSON. However, as per this constraint, the
response can be a certain script, which the client can download and
execute. However, REST applications very seldom gave this feature, since
it can be a potential security threat. The REST architecture specification
stipulates this constraint as optional.

Serialization

As mentioned earlier, modern web application development adopts

the API-first approach, in which the concept and implementation of
serialization (and deserialization) are of crucial importance. In response
to the client request, the server in a RESTful application needs to send
complex data structures (not just the plain text).

Serialization refers to the conversion of these objects (e.g., the
model objects in a Django app) into a byte stream in a format that can
be easily transferred from the server to the client via HTTP and may
be stored in a disk file or database. On the client end, the byte stream
needs to be converted back into the original state of the object for further
consumption - this process is called deserialization. The Figure 7-2 is
a schematic representation of this process. JSON (JavaScript Object
Notation) is the most preferred data exchange format in API design,
although XML (Extensible Markup Language) is also frequently used.

235

CHAPTER 7 REST APl WITH DJANGO

Convert to

_ | Convert from DatsObied
Byte Stream J I Byte Stream @ lec

Figure 7-2. Object serialization

Data Object f———

Django provides a serialization framework with which you can
translate Django models into JSON, XML, as well as YAML (YAML Ain’t
Markup Language) format. The serializers module in the django.core
package is a collection of several built-in serializer classes that handle
different data formats. The serialize() method serializes a queryset of
Django model objects in the desired format.

JSON serializer serializes the given object to JSON format, the one
most commonly used in Web APIs.

json = serializers.serialize("json", some_queryset)

Conversely, the deserialize() function obtains the original Python
object. Since the queryset is a list of model objects, you should cast it to

list type.
objects = list(serializers.deserialize("json", json))

The first argument to the serialize() function is one of the data
formats supported by Django. For example, the following statement
returns the XML representation:

xml = serializers.serialize("xml", some_queryset)

236

CHAPTER 7 REST APl WITH DJANGO

You can even create a Custom Serializer class by subclassing the
Serializer class and implement the functionality for serialization and
deserialization.

from django.core.serializers import Serializer

class MySerializer(Serializer):
def serialize(self, queryset, **options):
#serialization logic

def deserialize(self, queryset, **options):
#deserialization logic

Once the custom serializer is created, you register it within Django’s
serializer framework so you can use it with the serialize() and
deserialize() functions.

To add your own serializers, use the SERTALIZATION_MODULES
setting:

SERIALIZATION MODULES = {
"myformat": "MySerializer",

}

The serializers module is primarily designed for exporting models
to the JSON or XML format. However, it’s not suitable for building REST
APIs. First of all, performing serialization and deserialization manually for
every request is error-prone and introduces vulnerabilities. Furthermore,
features such as field validation are not provided by Django’s core
serializers. Hence, Django developers use a third-party app for this
purpose such as Django REST Framework (DRF), which is what you will
learn about in the next sections of this chapter.

237

CHAPTER 7 REST API WITH DJANGO

Django REST Framework

Django REST Framework is easily one of the most popular reusable apps
in the Django ecosystem. You can add a robust RESTful API to your Django
project with the help of this package. DRF takes you beyond the limitations
of core Django as far as the serialization support is concerned. Django
REST Framework comes with several additional enhancements.

One of the standout features of DRF is the browsable API. Instead
of using other tools and apps (such as cURL, Postman, and others), the
browsable API allows you to test the API endpoints directly in the browser.

DRF supports various authentication schemes and authorization
support such as OAuth2, TokenAuthentication, and JSON Web Token to
secure your API.

Like most open source products, DRF too has a great supportive
community and is used extensively by some of the well-known companies
like Mozilla, Red Hat, and Heroku.

DRF - Get Started

The Django REST Framework package was first released in 2011. Its latest
version - 3.15.2 - is compatible with the latest versions of Python as well
as Django. Along with this package, you may want to use Markdown and
Pygments to add Markdown support for the browsable API and the syntax
highlighting of Markdown - a popular text-to-HTML conversion tool.

As always, PIP installer is the most convenient tool for Python package

installation:
pip3 install djangorestframework markdown pygments

You need to include the 'rest_framework' app in the list of
INSTALLED_APPS of your Django project, along with the Django app in
which you will define your API endpoints. Assuming that you have already
created a new Django app named myapi in your project, the INSTALLED_
APPS setting should look like

238

CHAPTER 7 REST APl WITH DJANGO

INSTALLED APPS = [

'rest_framework',

'myapi',

The views in Django REST Framework are primarily class-based views.
It does support defining the function-based views in the classical manner,
but the view function is decorated by the ®@api_view decorator. This
decorator converts the view function into a subclass of APIView class. Note
that the request parameter of the function is an object of Request class in
DRF and not the HttpRequest object. Also, it returns a Response object -
it's an object of the Response class in the rest_framework.response
module, not the HttpResponse object.

Listing 7-1 defines a simple view function sayHello() that returns a
Hello World JSON response.

Listing 7-1. hello.py

from rest framework.decorators import api view
from rest framework.response import Response

@api_view()
def sayHello(request):
return Response({"message": "Hello, world!"})

The api_view() decorator has one argument in the form of http
method names list. Here, the sayHello() view is invoked in response
to a GET request. For others, the corresponding HTTP verbs should be
included in the list.

@api view(http method names=['GET'])

239

CHAPTER 7 REST APl WITH DJANGO

Associate this function with a suitable URL route in the app’s urls
module, as in Listing 7-2.

Listing 7-2. urls.py in app

from django.urls import path
from . import views

urlpatterns = [
path('hello/',views.sayHello),

As a final step, update the project’s URLCONF by including the myapi.
urls module (Listing 7-3).

Listing 7-3. urls.py in project

from django.contrib import admin
from django.urls import include, path

urlpatterns = [
path('admin/', admin.site.urls),
path('myapi/', include('myapi.urls")),

The browsable API will show up in the browser in response to the URL
http://localhost:8000/myapi/hello/ (refer Figure 7-3) when Django’s
built-in server is launched.

240

CHAPTER 7 REST APl WITH DJANGO

M [SayHello - Django REST framew: X | = = o X

(@ localhost:8000/myapi/hello/ e 3 sas

Say Hello

Say Hello

GET /myapi/hello

HTTP 286 OK
Allow: GET, OPTIONS
Content-Type: application/json

Vary: Accept

"message”: "Hello, world!"™ ‘

Figure 7-3. Browsable API

As mentioned earlier, the browsable API is a unique offering of DRF. It
is an interactive web interface automatically generated for your API
endpoints. The browsable API allows you to perform not only the GET but
POST, PUT, and DELETE requests as well directly from the browser. Hence,
you don’t need tools such as Postman to test and debug your API.

Let us add another view function to this API.

@api view()

def drfRoute(request):
return Response({'message': 'REST API designed by Django
REST Framework'})

241

CHAPTER 7 REST API WITH DJANGO
Update the app’s urlpatterns list by including its path:
urlpatterns += [path('drf/', views.drfRoute, name='drf')]

Itis always a good practice to define a root endpoint that shows the
links to the other endpoints in your APIL.

from rest framework.reverse import reverse
@api_view()
def api root(request):
return Response({
'hello': reverse('hello', request=request),
"drf': reverse('drf', request=request),

1)

The reverse() function in the rest_framework.reverse module is a
handy shortcut function that returns a fully qualified URL associated with
aview function.

Again, update the urlpatterns list to include the path to the api_root()
function:

urlpatterns += [path('', views.api root, name='api-root')]

As a result (Figure 7-4), the http://localhost:8000/myapi/ URL in the
browser displays the links to the /hello and /drf endpoints, so your API is
truly browsable.

242

CHAPTER 7 REST APl WITH DJANGO

2 (73] [ApiRoot - Django REST framewc X = = = =] X

= (@ localhost:3000/myapi/ T'.?) m - B

Api Root

Api Root
GET /myapi
HTTP 280 OK

Allow: OPTIONS, GET
Content-Type: application/json
Vary: Accept

"hello": "http://localhost:8608/myapi/hello/",
"drf": “"http://localhost:8eee/myapi/drf/”

| localhost:8000/myapi/drf/ v

Figure 7-4. Apiroot

This provides you the glimpse of how an API is built with Django REST
Framework. Obviously, you would like to develop an API that exposes
endpoints for performing the CRUD operations on database models.

For that, you should know how the model objects are serialized in the
JSON format. The Django REST Framework comes with the serializers
module, having different serializer classes, serializer fields, etc.

243

CHAPTER 7 REST APl WITH DJANGO

Serializer Class

Serialization, as you have learned in the previous section, is a process that
transforms data into a format that can be stored or transmitted and then
reconstructed. The built-in serializers in core Django are mainly used

for things like database dumps, importing/exporting data, or integrating
with external systems. On the other hand, the serializers in Django REST
Framework are much more powerful and flexible, designed specifically
for building REST APIs. Some of the key features of serializers in DRF are
the field customization and robust validation capabilities. The views and
routers in DRF are integrated with the serializers.

The rest_framework.serializers module includes various classes
and utilities, such as serialization classes, field classes, and validation
utilities.

The Serializer class defined in this module helps you to covert a Python
object - more specifically an object of Django model into native Python
data type, which then can be rendered in serializable data formats such as
JSON or XML.

Let us start by adding a Django model in our app, as the
Listing 7-4 shows.

Listing 7-4. Ticket model
from django.db import models

class Ticket(models.Model):
flight number = models.CharField(max_length=10)
passenger name = models.CharField(max_length=100)
departure time = models.DateTimeField()
seat_number = models.CharField(max_length=5)

Yes, you guessed it right, we shall use this model to build a Ticketing
API during the course of this chapter.

244

CHAPTER 7 REST APl WITH DJANGO

Next up, define a TicketSerializer class (refer Listing 7-5) with
rest framework.serializers.Serializer asits base. This class will be
placed inside the serializers.py module. The attributes in the Serializer
class are the objects of serializer field classes, very similar to the model
fields. Ensure that the attributes match with those used in the model class.

Listing 7-5. serializers.py
from rest framework import serializers

class TicketSerializer(serializers.Serializer):
flight number = serializers.CharField(max length=10)
passenger name = serializers.CharField(max_length=100)

departure time = serializers.DateTimeField()
seat_number = serializers.CharField(max_length=5)

Both these classes are placed in the models.py module.
Launch the Django shell and import these two classes.

python manage.py shell
>>> from myapi.models import Ticket
>>> from myapi.serializers import TicketSerializer

Declare a Ticket object:

>>> ticket = Ticket(flight number="AI123", passenger
name="'John Doe', departure_time='2024-10-05
14:30:00", seat_number="12A")

To serialize the Ticket object, pass it to the TicketSerializer constructor:

>>> serialized ticket = TicketSerializer(ticket)

245

CHAPTER 7 REST APl WITH DJANGO

The Serializer class is characterized by some useful attributes and
methods.

data: This property holds the serialized data of the
Python object.

validated_data: The cleaned and validated data
after calling is_valid() is stored in this property.
This is used to create or update objects during the
deserialization process.

>>> serialized ticket.data
{'flight number': 'AI123', 'passenger name': 'John Doe',
"departure time': '2024-10-05 14:30:00', 'seat number': '12A'}

The rest framework package defines a JSONRenderer for rendering
the serialized data to JSON format.

>>> from rest framework.renderers import JSONRenderer

>>> json_ticket = JSONRenderer().render(serialized ticket.data)
>>> print (json_ticket)

b'{"flight number":"AI123","passenger name":"John
Doe","departure time":"2024-10-05 14:30:00","seat
number":"12A"}'

On the other hand, we can parse the serialized stream to deserialize
this object to Python’s native data types. You will get the dictionary
representation of the original Ticket object.

>>> from rest framework.parsers import JSONParser
>>> import io

>>> stream = io.BytesIO(json_ticket)

>>> data = JSONParser().parse(stream)

>>> serialized data=TicketSerializer(data=data)
>>> serialized data.is valid()

246

CHAPTER 7 REST APl WITH DJANGO

True

>>> print (serialized data.validated data)
{'flight_number': 'AI123', 'passenger name': 'John Doe',
"departure_time': datetime.datetime(2024, 10, 5, 14, 30,
tzinfo=zoneinfo.ZoneInfo(key="UTC")), 'seat number': '12A'}

Obviously, we would like the serialization to be performed inside the
views. Before we actually write the views to handle the CRUD operations,
we need to carefully design and develop the endpoints of our API. An API
endpoint is actually a specific URL route that will be exposed to the API
clients. They send their requests to the endpoints in order to access the
resources made available by the API server.

As mentioned earlier, we shall be developing a Ticketing API, where
all the CRUD operations will be done on the Ticket model. Since myapi is
the name of our Django app, it will be the preceding part of the endpoint,
followed by an identifier referring to either a collection of resources or a
specific instance of the resource. The HTTP method used to invoke the
endpoint indicates the type of operation to be performed.

In the case of this Ticketing API, the /myapi/tickets endpoint called
with the GET method conventionally retrieves all the instances of Ticket
model, and the same endpoint called with the POST method is linked to
the creation of a new Ticket instance. On the other hand, the /myapi/
tickets/id endpoint called with PUT and DELETE methods is assumed to
perform the UPDATE and DELETE operations.

Endpoint Method Operation
/myapi/tickets GET List of tickets
/myapi/tickets POST Create a new ticket
/myapi/ticket/id GET Retrieve a ticket
/myapi/ticket/id PUT Update a ticket
/myapi/ticket/id DELETE Delete a ticket

247

CHAPTER 7 REST APl WITH DJANGO

Django REST Framework has a unique Router class that provides an
automatically generated root view. You shall learn about this in one of the
subsequent sections.

Serializer Fields

The attributes of a Serializer class are the objects of Field classes. Much like
the Form fields, the serializer fields handle the conversion between model
attributes and serializable objects, as well as the validation part.

The field types in Django REST Framework are more or less the same
as Django’s Form fields; some of them are

e BooleanField

e CharField

o IntegerField

o FloatField

o DateTimeField
e EmailField

Each of these field types has its own validation mechanism. For
example, the UniqueValidator enforces the unique=True constraint on
model fields. The arguments used in the construction of fields, such as
max_length, min_value, max_value, etc., act as validation constraints.

Serializer Methods

is_valid(): This method checks if the data provided
is valid as per the validation rules of the serializer.

validate(): This is the object-level validation
method, used to perform validation on the entire
object. You may override this method in your
serializer class to add custom validation logic.

248

CHAPTER 7 REST APl WITH DJANGO

save(): This method saves the validated data,
usually by creating or updating an instance. If your
serializer needs a custom logic for saving the data,
this method may be overridden accordingly.

create(): This is a method used to create a new
instance when calling save() with deserialized data.
Normally you would override this method when
handling object creation for custom serializers.

update(): An existing instance is updated when
calling save() with deserialized data.

ModelSerializer

More often than not, the serializer fields correspond to the model fields.
So here is a shortcut approach. The ModelSerializer class automatically
maps its field attributes to the model attributes of its inner Meta class.
Moreover, the ModelSerializer also generates the required validators.
In other words, the ModelSerializer class is a specialized Serializer class
that automatically generates the fields for you, based on the model. It
also includes simple default implementations of create() and update()
methods.

We have already declared the Ticket model; let us migrate it to a
corresponding database table. Create the object as in the previous section,
and save it to the database.

>>> from myapi.models import Ticket

>>> ticket = Ticket(flight number='AI123"', passenger
name="John Doe', departure_time='2024-10-05

14:30:00", seat_number="12A")

>>> ticket.save()

249

CHAPTER 7 REST APl WITH DJANGO

Similarly, go ahead and add a few more instances of the Ticket model.

Let us change the TicketSerializer class to make it a subclass of
ModelSerializer. As the Listing 7-6 shows, we need not define the
individual field attributes. Instead, tell Django to map the fields of Django
models to corresponding serializer fields.

Listing 7-6. ModelSerializer

from rest framework import serializers
from .models import Ticket

class TicketSerializer(serializers.ModelSerializer):

class Meta:
model = Ticket
fields = " all "

Here, Meta is an inner class that provides metadata about the serializer.
Two essential attributes to define in the Meta class are model and fields.
The model attribute is actually the Django model to be mapped to the
serializer (in this case, the Ticket model). The fields attribute is the list of
model fields to be included in the serialized representation.

You can either give the list of fields explicitly such as

fields = ['passenger name', 'passenger name', 'seat number']
or set the property to all fields:

fields = " all "
You can also ask certain fields to be excluded.

exclude = ['field1', 'field2']

250

CHAPTER 7 REST APl WITH DJANGO

We shall now define a tickets() view that renders a serialized
representation of the objects from the Ticket model (Listing 7-7). In other
words, this will be the implementation of GET request in our Ticketing APIL

Listing 7-7. Using serializer in DRF view

from .models import Ticket
from .serializers import TicketSerializer

@api_view()

def tickets(request):
tickets = Ticket.objects.all()
serialized tickets = TicketSerializer(tickets, many=True)
return Response(serialized tickets.data)

Update the app’s urlpatterns list by including the URL mapping for the
tickets() view.

urlpatterns += [path('tickets/', views.tickets,
name="tickets")]

Visit the URL http://localhost:8000/myapi/tickets/ in your browser to
get the JSON response containing the list of tickets, as in the Figure 7-5.

251

CHAPTER 7 REST API WITH DJANGO

Ifﬂ [Tickets — Django REST framework X - = o X
_e;

C (D localhost:8000/myapi/tickets/ 7 uh} < [B

Tickets

GET /myapi/tickets

HTTP 288 OK

Allow: GET, OPTIONS
Content-Type: application/json
Vary: Accept

T 1,

"flight_number": "AI123"

“passenger_name”: "John Doe”
"departure_time": "2824-10-85T14:30:00Z2"
"seat_number”: "12a"

a2,

"flight_number": "EK103"

"passenger_name”: "Jane Smith",
"departure_time": "2824-10-85707:30:001",
“seat_number"”: "22¢"

mdty 3,

"flight_number": "QFg",

"passenger_name": "Alex Wall",
"departure_time": "2024-10-05T11:00:002",
"seat_number”: "188"

Figure 7-5. JSON response

Since the ‘tickets/’ endpoint is used for both the GET and POST
methods, the mapped tickets() view function should process both the
request types. The @api_view decorator on the top should be instructed to
allow both the methods.

@api_view(['GET', "POST'])

252

CHAPTER 7 REST APl WITH DJANGO

When the same view is called with the POST request, it comes with the
body parameters passed by the client. The browsable API of Django REST
Framework lets you pass the data in a JSON format when the POST request
is used to visit the ‘tickets/’ endpoint.

To create a new Ticket instance, you need to construct the
TicketSerializer object using the request data. After verifying its validity,
the save() method is called to persist the Ticket instance in the database.
This logic is implemented by adding the conditional block inside the
tickets() function in the Listing 7-8.

Listing 7-8. GET and POST with serialized view

from rest framework import status
@api view(['GET', "POST'])
def tickets(request):
if request.method=="GET':
tickets = Ticket.objects.all()
serialized tickets = TicketSerializer(tickets,
many=True)
return Response(serialized tickets.data)

elif request.method=="'POST":
serialized ticket = TicketSerializer
(data=request.data)
serialized ticket.is valid(raise
exception=True)
serialized ticket.save()
return Response(serialized ticket.validated
data,status.HTTP_201 CREATED)

The browsable API page (Figure 7-6) displays the list of all instances
as before. However, when you scroll down the page, a POST section is
present. Enter the JSON representation of a new Ticket object to be created
in the Content box, and press the POST button at the bottom.

253

CHAPTER 7 REST APl WITH DJANGO

: @ [Tickets - Django REST framework X =~ =] x|
5 O 'ii_.) localhost:8000/myapi/tickets/ AN 7 [|:| [|

Media type:

application/json v

Content:

{
"id": 4,
"flight_number”; "AA101",
"passenger_name": "Alan wood",
"departure_time": "2024-10-12T11:00:00Z",
“seat_number”: "23B"

| POST

Figure 7-6. POST form in the browsable API

Note that both the GET and POST methods are allowed for the tickets/
endpoint. The POST request is processed with 201 response, as in
Figure 7-7, indicating that a new resource has been successfully created.

254

CHAPTER 7 REST APl WITH DJANGO

e @ B Tickets — Django REST framework X ES a =] X

L]
&« G (O localhost:8000/myapi/tickets/ A 1 u}] R | .

Api Root ickets

Tickets el

POST /myapi/tickets

HTTP 201 Created
Allow: OPTIONS, POST, GET
Content-Type: application/json

Vary: Accept
"flight_number": "Aale1"
“passenger_name”: "Alan wood"
"departure_time": "2024-10-12T11:60:00Z",
"seat_number”: "23g"

Figure 7-7. POST endpoint returning 201 response

The other API endpoint that we have planned earlier is /myapi/
ticket/id, where id is the primary key for the Ticket object to be retrieved,
updated, or deleted. We need to map this URL route to the ticket() view
function that has an int path parameter. Accordingly, let us update the
urlpatterns list by adding a path:

urlpatterns += [path('ticket/<int:id>', views.ticket,
name="ticket")]

Note that the URL pattern ticket/id is the same for GET (a single Ticket
resource), PUT (update a Ticket), and DELETE (delete a Ticket); the
@api_view() decorator must be configured to allow these methods.

@api view(['GET','PUT', 'DELETE'])

255

CHAPTER 7 REST API WITH DJANGO

The decorated ticket() function fetches the path parameter, retrieves
the object with the corresponding primary key, and processes the three
HTTP requests with three conditional blocks inside it.

The GET request handling is straightforward (Listing 7-9); return the
serialized object to the client.

Listing 7-9. GET, PUT, and DELETE in serialized view

@api view(['GET','PUT', 'DELETE'])
def ticket(request, id):
ticket = Ticket.objects.get(pk=id)
if request.method=="GET":
serialized ticket = TicketSerializer(ticket)
return Response(serialized ticket.data)

To handle the PUT request, the request data is used to update one
or more attributes of the Ticket object. In this case, we update the flight
number of an existing booking.

elif request.method=="PUT':
ticket.flight number = request.data['flight number’]
ticket.save()
serialized ticket=TicketSerializer(ticket)
return Response(serialized ticket.data, status=400)

The DELETE handler block simply calls the delete() method on the
ticket object.

elif request.method=="DELETE':
ticket.delete()
return Response(status=status.HTTP_204 NO_CONTENT)

256

CHAPTER 7 REST APl WITH DJANGO

In response to the URL http://localhost:8000/myapi/ticket/1, the
browsable API returns the Ticket instance with the corresponding primary
key (GET operation), which you can delete - the DELETE button appears
in the response, as in Figure 7-8.

: 73] [Ticket - Django REST framework X 4= = o x
< (5 (© localhost:8000/myapi/ticket/1 i S - |

Api Root Ticket

Ticket I

GET /myapi/ticket/1

HTTP 280 oK
Allow: PUT, OPTIONS, DELETE, GET
Content-Type: application/json

Vary: Accept

R,

"flight_number”: “AT123",
"passenger_pame”: "John Doe”
"departure_time": "2024-10-85T14:30:002"
"seat_number”: “12a"

Figure 7-8. Browsable API with the DELETE button

Scroll down the page to locate the PUT section (Figure 7-9), enter the
value for the flight number to be updated, and click the PUT button.

257

CHAPTER 7 REST APl WITH DJANGO

2 73] [Ticket—Django REST framework X = == = o x

= C.'v (D localhost:8000

‘myapi/ticket/1 w S - |

Content:

{
"flight_number": "Al1101"

}

Figure 7-9. PUT form in the browsable API

So here is a complete API, capable of serving the GET, POST, PUT, and
DELETE requests from any HTTP client. DRF’s built-in Browsable API
feature is extremely useful to test the API endpoints. However, you may use
any other tool, such as Postman, HTTPie, or even the cURL command-
line tool.

Figure 7-10 shows the GET request being tested in the HTTPie app.

258

CHAPTER 7 REST APl WITH DJANGO

7 HTTPie = O X

? oe7 localhost:8000/myapi.. x -+

82 CGET i http

Params H

st GET Response 200

1 200 OK (10

Figure 7-10. Testing API endpoints with HTTPie

HyperlinkedModelSerializer

A specialized variant of ModelSerializer, the HyperlinkedModelSerializer -
as the name implies - uses hyperlinks instead of the primary keys to
represent the relationships between objects.

This is particularly useful for APIs where you want to expose related
objects via their URLs, making the API more intuitive and navigable.

This serializer uses a url field instead of a primary key field. The
url field is a serializer field of the type HyperlinkedIdentityField. Any
relationships on the model will be represented in this field.

259

CHAPTER 7 REST APl WITH DJANGO

You need to explicitly include the primary key by adding it to the fields
option. The Meta subclass in this serializer for the Ticket model should
include a fields attribute as

fields = ['url', 'flight number', 'passenger name', 'departure_
time', 'seat number']

You should also include the extra_kwargs attribute that determines
how the URL is formed, by specifying the view_name and the lookup
fields properties.

By default, the view name property should be set to the style ‘{model
name}-detail’, and lookup_field takes pk as its values. You can, of course,
override both by setting appropriate values. We shall stick to the defaults,
although it is better to set them explicitly.

extra kwargs = {'url': {'view name': 'ticket-detail', 'lookup_
field': 'pk'}

As aresult, each resource in the Ticket model will be represented as a
hyperlink in this form:

http://localhost:8000/myapi/ticket/1

Hence, the TicketSerializer class will now be derived from
HyperlinkedModelSerializer, and its definition is shown in Listing 7-10.

Listing 7-10. HyperlinkedModelSerializer class

from rest framework import serializers
from .models import Ticket
class TicketSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = Ticket
fields = ['url', 'flight number', 'passenger name',
"departure time', 'seat number']

260

CHAPTER 7 REST APl WITH DJANGO

extra kwargs = {
‘url': {'view name': 'ticket-detail', 'lookup_
field': 'pk'}

}

We also need to ensure that the view function that handles the GET
and POST requests should be in the form model list and the function that
handles GET, PUT, and DELETE requests for a single model instance as
model detail. Also, the name of the view in the URL mapping should be in
the form model-1ist and model-detail So we need to change the function
names to ticket list() and ticket detail().

So let us update the urlpattern of the API as

urlpatterns = [
path('tickets/', views.ticket list, name='ticket-list'),
path('ticket/<int:pk>/", views.ticket detail, name='ticket-
detail'),

Another crucial requirement for the HyperlinkedSerializer is that
we pass the request object to the serializer’s context. This is required to
correctly generate the full URL for the serialized object.

Accordingly the earlier tickets() view function is renamed as ticket
all(), and while handling the GET request, the TicketSerializer object
is obtained as

serializer = TicketSerializer(tickets, many=True,
context={"request': request})

Similarly, inside the conditional block that handles the POST request,
the context data must be passed to the TicketSerializer constructor.

serializer = TicketSerializer(data=request.data,
context={"request': request})

261

CHAPTER 7 REST APl WITH DJANGO

No other changes are needed in the function that processes the GET
and POST requests.

On similar lines, you should rename the earlier ticket() view function
to ticket_detail() and pass Request object as the context while instantiating
the TicketSerializer object.

For GET request:

serializer = TicketSerializer(ticket, context={'request':
request})

and for PUT request:

serializer = TicketSerializer(ticket, data=request.data,
context={"'request': request})

The complete code for the API with HyperlinkedModelSerializer can
be accessed from the book’s GitHub repository.

How does the browsable API show the effect of these changes? Well,
incorporate all the above changes, fire the Django development server, and
point your browser to http://localhost:8000/tickets/.

262

CHAPTER 7 REST APl WITH DJANGO

S @ [TicketList-Django REST framew X = = - (8] X

< (G (O localhost:8000/myapi/tickets/ A Ty E C

Ticket List

Ticket List

GET /myapi/tickets

HTTP 280 OK

Allow: POST, OPTIONS, GET
Content-Type: application/json
Vary: Accept

"url": "http://localhost:g8008/myapi/ticket/1/"
“flight_number®: "AIle1"
"passenger_name": "John Doe",
“departure time": "2024-10-85T14:30:00Z",
Esectmatimbenin. "12A"
localhost:8000/myapi/ticket/1/ v

Figure 7-11. Response with HyperlinkedModelSerializer

As can be seen in Figure 7-11, the JSON representation of each ticket
instance has a url attribute with a hyperlink to its detailed representation -
such as http://localhost:8000/ticket/1, which, when clicked, shows up
in the browser with the provision to perform GET, PUT, and DELETE
operations.

263

CHAPTER 7 REST APl WITH DJANGO

DRF - Class-Based Views

As mentioned earlier, the views in DRF are primarily class based. Even
though you used the classical function-based views in the previous
section, you must have noticed that the view functions are annotated by
@api_view(), which converts it as a subclass of the APIView class.

Remember you also learned about class-based views in core Django?
A class in a core Django app with the View class from the django.views
module was used as its base. In the Django REST Framework, we have the
rest framework.views module that includes the APIView class. The DRF
class-based view is a class that inherits the APIView class. Note that the
APIView class is also based on Django’s View class.

Just as Django’s CBV, the APIView subclass also includes the get(),
post(), put(), and delete() methods that handle the corresponding HTTP
requests. The functionality of these methods is much the same as the
conditional blocks in the view functions - ticket list() and ticket
detail().

In the beginning of our discussion on DRF and serialization, we had
identified two API endpoints:

/myapi/tickets/: To process the GET method
(retrieve all tickets) and POST method (create a
new ticket)

/myapi/ticket/id: To process the GET method
(retrieve a given ticket), PUT method (update a
ticket) and DELETE method (delete a ticket)

Hence, we need to design two subclasses of the APIView class:
TicketListView having get() and post() methods and TicketDetailView
having get(), put(), and delete() methods. Recollect the fact that you need
to use the as_view() method of these classes to map the URL with the
path() function to build the urlpatterns list.

264

CHAPTER 7 REST APl WITH DJANGO

urlpatterns = [

path('tickets/', views.TicketListView.as view(),
name="ticket-list'),

path('ticket/<int:pk>/", views.TicketDetailView.as view(),
name="'ticket-detail'), exists

As mentioned above, the TicketListView (the APIView subclass)
defined the get() and post() methods. The get() method returns the

serialized data of all the Ticket instances. The post() method serializes the

data in the request body and saves it as a new Ticket instance.

Listing 7-11. TicketListView

from
from
from
from
from

rest framework.views import APIView
rest framework import status
rest framework.response import Response

.models import Ticket

.serializers import TicketSerializer

class TicketListView(APIView):

def

def

get(self, request):

tickets = Ticket.objects.all()

serialized tickets = TicketSerializer(tickets,
many=True)

return Response(serialized tickets.data)
post(self, request):

serialized ticket = TicketSerializer(data=request.data)

serialized ticket.is valid(raise exception=True)
serialized ticket.save()

return Response(serialized ticket.validated
data,status.HTTP_201 CREATED)

265

CHAPTER 7 REST APl WITH DJANGO

Note that the get() and post() methods (in the Listing 7-11) each
perform exactly the same steps as you find in the conditional code blocks
in the ticket all() view function.

Keeping this fact in mind, you can easily design the TicketDetailView
class. All you need to do is put the conditional blocks from the ticket_
detail() view functions in the corresponding methods - get(), put(), and
delete() methods.

When the development server is launched, your API works exactly as
before. Figure 7-12 shows a screenshot of the request to display the details
of the ticket instance with 1 as its primary key.

@ [3 Ticket Detail - Django REST fram: X = - O X

e (3 (D localhost:8000/myapi/ticket/1/ = B

Ticket Detail

Ticket Detail) |

GET /myapi/ticket/1

HTTP 28@ 0K

Allow: GET, PUT, DELETE, HEAD, OPTIONS
Content-Type: application/json

Vary: Accept

™ 1,
"flight number": “"AIle1"

"passenger_name”: "John Doe",
"departure_time": "2024-10-05T14:30:00Z"
"seat number”: "12a"

Figure 7-12. Using APIView

266

CHAPTER 7 REST APl WITH DJANGO

DRF - Generic Views

Again, you might recollect that you learned about the generic views in
core Django as well. They (like ListView, DetailView, CreateView, etc.)
are designed to be used in a classical web application that serves HTML
templates. These views help you write concise code to perform the CURD
operations (CRUD) on models and work well with Django’s form system.

The generic views in Django REST Framework, on the other hand,
are specifically designed to handle API requests and render serialized
responses. While the function-based and class-based views are more
verbose, the generic views in DRF simplify the creation of RESTful APIs
that map closely to the database models by automating common actions
while handling different HTTP methods.

The rest_framework.generics module defines the GenericAPIView
class (which in fact extends the APIView class) that acts as the parent
class for other concrete generic class-based views. As in the case of the
core Django generic classes, in the case of DRF also, you need to design a
custom class with one of the generic classes as the parent.

Different generic view classes in the generics module can be clubbed
in two categories. In the first category, there is a separate view class that
handles each of the HTTP methods.

ListAPIView: A subclass of this view class handles
the GET method that is to be mapped to a read-only
API endpoint and fetches a collection of resources of
a certain type (all the tickets in the Ticket model in
this case).

CreateAPIView: This view corresponds to the POST
request, responsible for creating a new instance of
the given model.

267

CHAPTER 7 REST APl WITH DJANGO

RetrieveAPIView: This view is responsible for
handling a GET request that retrieves a single
instance of the given model.

UpdateAPIView: As you would imagine, a subclass
of this view class is mapped to the endpoint that will
perform the UPDATE operation on a single model
instance, in response to the PUT request.

DestroyAPIView: Finally, this view handles a
DELETE method, causing a single model instance to

be removed.

The subclasses of these views follow a similar syntax pattern:

from rest framework import generics

class Class_name(generics.XXXAPIView):
queryset = Ticket.objects.all()
serializer class = TicketSerializer

Here, XXX will be List, Create, Retrieve, Update, or Destroy. Let us
assume the names of respective classes would be TicketList, NewTicket,
TicketDetail, TicketUpdate, and TicketDelete.

As you must have noted, each of these views handles a different
request. Hence, you need to form a different API endpoint to map
with each.

Hence, the urlpatterns list has the following structure:

urlpatterns = [
path('tickets/list/', views.TicketlList.as view()),
path('tickets/new/', views.TicketNew.as view()),
path('tickets/detail/<int:pk>/"', views.TicketDetail.as

view()),

268

CHAPTER 7 REST APl WITH DJANGO

path('tickets/update/<int:pk>/"', views.TicketUpdate.as
view()),
path('tickets/delete/<int:pk>/"', views.TicketDelete.as

view()),

The second category of classes in the generics module combines
handling of more than one HTTP method.

Recall that we had two function-based views. The tickets() view
function to process a GET method to fetch all the model instances and
to create a new instance. The ticket () view function deals with the
request that retrieves, updates, and deletes a single model instance. We
had also registered two URL endpoints mapped to them: ‘tickets/’ and
‘ticket/<int:pk>/’.

On similar lines, we have four different concrete generic view classes
that combine more than one request handler.

ListCreateAPIView: Subclass this view to fetch all
the model instances in response to a GET request
and as a POST handler to create a new instance.

RetrieveUpdateAPIView: If you need to define a
single endpoint for retrieval and update of a single
instance, define a subclass of this view.

RetrieveDestroyAPIView: Similarly, define a class
with this generic class as the parent if you need to
have an endpoint that sends requests for retrieval
and deletion of a single resource.

RetrieveUpdateDestroyAPIView: This is a generic
class that works as a handler for requests of the type
retrieval, update, and deletion of a single instance.

269

CHAPTER 7 REST APl WITH DJANGO

Generally, an API has two URL endpoints for performing the CRUD
operations: one for fetching all instances and creating a new instance
and the other to handle READ, UPDATE, and DELTE requests on a single
instance.

Hence, the usual practice is to define a subclass of
ListCreateAPIView (for the first endpoint) and another subclass of
RetrieveUpdateDestroyAPIView (to be mapped with the second endpoint).

class TicketListCreateView(generics.ListCreateAPIView):
queryset = Ticket.objects.all()
serializer class = TicketSerializer

class TicketRetrieveUpdateDeleteView(generics.
RetrieveUpdateDestroyAPIView):

queryset = Ticket.objects.all()

serializer class = TicketSerializer

Accordingly, the urlpatterns list defines the URL mapping with

these views:

urlpatterns = [
path('tickets/', views.TicketListCreateView.as view(),
name="ticket-list"),
path('tickets/<int:pk>/", views.TicketRetrieve
UpdateDeleteView.as view(), name="ticket-
detail'),

Look how compact the API design has become with the use of these
compound generic views. Another noteworthy feature of these generic
views is that while testing the endpoints with the browsable APT -
especially those handling the POST and PUT requests - you get a nice
HTML form (refer Figure 7-13) to send the request body data (the option to
send it in JSON format is always there).

270

CHAPTER 7 REST APl WITH DJANGO

[3 Ticket List Create — Django REST | X = = O X

2 @
< O (D localhost:8000/myapi/tickets/ A 5y EER - |

Raw data HTML form

Flight number
Passenger name

Departure time

mm/dd/yyyy -1 --

Seat number

v

Figure 7-13. Generic views provide an HTML form for the
POST method

ViewSets

The Django REST Framework offers another feature of ViewSet classes with
which writing the CRUD operations becomes even more concise. In the
previous section, you used two compound generic view classes - one to
handle the list and create operations and the other to process the retrieve,
update, and delete operations. With the ViewSet, a single class holds the
handler methods for all the operations. The ViewSet class is defined in

the rest_framework.viewsets module. Although the ViewSet is a type of

271

CHAPTER 7 REST APl WITH DJANGO

class-based view, it doesn’t include HTTP handler methods - like get() or
post() - Instead, the names of the methods are indicative of the action to be
performed - such as 1ist(), create(), retrieve(), update(), and destroy()
methods. These methods are bound to the HTTP methods when you map a
URL endpoint to the as_view() method of the ViewSet. We shall shortly find
out how the binding of the viewset actions with HTTP methods works.

ModelViewSet

In most use cases, we define a subclass of Mode1ViewSet class (instead
of the ViewSet class); it includes the default implementations of actions
(list(), retrieve(), create(), update(), and destroy()). As you would
expect, the ModelViewSet class extends the GenericAPIView class. Hence,
you need to set the queryset and serializer class attributes.

Let us define a ModelViewSet class to handle the serialization of Ticket
models, as in Listing 7-12.

Listing 7-12. Using ModelViewSet

from rest framework import viewsets
from .models import Ticket
from .serializers import TicketSerializer

class TicketViewSet(viewsets.ModelViewSet):
queryset = Ticket.objects.all()
serializer class = TicketSerializer

As mentioned earlier, the ViewSet actions are bound with the required
HTTP methods to let Django know which type of HTTP requests you want
to be processed when a particular endpoint is accessed. To maintain the
consistency with the previous examples, when the client hits the ‘tickets/’
URL with the GET request, it should perform the 1ist() action; for POST
request, the create() action should be invoked. This association is spelled
out as a dict argument to the as_view() method of the ViewSet class.

272

CHAPTER 7 REST APl WITH DJANGO

urlpatterns = [

path(
"tickets/', views.TicketViewSet.as view(
{'get': 'list', 'post': 'create'}
), name='ticket-1list'),

path(
"ticket/<int:pk>/", views.TicketViewSet.as view(
{'get': 'retrieve', 'put': 'update', 'delete’:
"destroy'}
), name='ticket-detail')

Note that the ‘ticket/<int:pk>/’ URL invokes the retrieve(),
update(), and destroy() actions, respectively, in the case of HTTP
requests of the type GET, PUT, and DELETE.

Routers

Normally, you don’t explicitly register the views in a viewset in the
URLCONEF as done here; instead, you'll register the viewset with a router
class, which automatically creates the associations between the URLs
and views.

The rest_framework.routers module includes the definitions of
router classes. With the routers, you can quickly wire up your view logic to
a set of URLSs.

So far our approach to establish URL routing has been to construct
the urlpatterns of a Django app and then include it in the URLCONF of
the Django project. When using the routers, the urlpatterns of the app
are no longer needed. All you need to do is to call the register() method
of a Router class, which will automatically generate the urlpatterns for a
given viewset. You can then include the urls property of the Router in the
URLCONEF of the project. Effectively, the need of the urlpatterns list of the

Django app is eliminated.

273

CHAPTER 7 REST APl WITH DJANGO

The routers module includes two classes: SimpleRouter and
DefaultRouter. While the behavior is more or less the same, the
DefualtRouter generates an additional root view that returns a response
containing hyperlinks to all the list views.

To let DRF generate the urlpatterns, obtain an object of DefaultRouter
class and call its register () method, as the Listing 7-13 does.

Listing 7-13. Registering router

from rest framework.routers import DefaultRouter
from myapi.views import TicketViewSet

router = DefaultRouter()
router.register('tickets', TicketViewSet)

The register () method needs two arguments:

prefix: A string that serves as the URL prefix for the
viewset. In the above example, the value of prefix
is ‘tickets’, which means that the URLs for listing,
creating, retrieving, updating, and deleting tickets
will be prefixed with /tickets/.

viewset: The viewset class you want to associate
with this prefix. This should be a subclass of ViewSet
or ModelViewSet that defines the actions (list,
create, retrieve, update, destroy) you want.

The various HTTP methods, the ViewSet actions bound to them,
and the corresponding auto-generated URL routes are summarized in
Table 7-1.

274

CHAPTER 7 REST APl WITH DJANGO

Table 7-1. URL routes of ViewSet

URL Route HTTP Method Action URL Name
myapi/ GET Automatically generated api-root
root view

myapi/tickets/ GET list() ticket-list
POST create()

myapi/tickets/pk ~ GET retrieve() ticket-detail
PUT update()
DELETE destroy()

Once this is done, the auto-generated urlpatterns are added to the
urlpatterns list of the Django project (not the Django app).

urlpatterns = [
path('admin/', admin.site.urls),
path('myapi/', include(router.urls)),

The URL http://localhost:8000/myapi/ is the Api root of your REST
server. Check if the browser output is as shown in Figure 7-14.

275

CHAPTER 7 REST APl WITH DJANGO

[ApiRoot-Django REST framewo X = - o x

S @
<« G (D localhost:8000/myapi/ < [

Api Root |

Api Root

The default basic root view for DefaultRouter

GET /myapi |

HTTP 288 OK

Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

"tickets": "http://localhost:g8eee/myapi/tickets/"

i

Figure 7-14. Auto-generated Apiroot

DRF - Authentication

How does the authentication work? The user authentication is performed
before the execution of a view mapped to a certain URL route. It is only
after the user is authenticated that the view code is processed.

You have already learned how the authentication system works in
the core Django, wherein once the user is logged in, multiple requests
may be handled till they log out - that is till the session lasts. The Django
REST Framework expands on it specifically for the API scenario. As you
know, the API interactions are REST compliant, which means that they are
stateless.

276

CHAPTER 7 REST APl WITH DJANGO

Another important point of difference in how the authentication works
in Django and DRF is that in the case of the former, it relies on session
authentication, whereas there are multiple authentication schemes
available for the latter.

Apart from Django’s default session authentication, Django
REST Framework provides out-of-the-box support for the following

authentication schemes:

BasicAuthentication: Under this type of
authentication, the client includes the username
and password of the user with each request. It is
recommended for testing purpose and not suitable
for the production environment as including

the user credentials in the request poses a

security threat.

TokenAuthentication: This is a much more robust
option for authentication of client requests where a
unique token is generated for each user and that is

sent with each request as the Authorization header.

With the Ticketing API that we now have, any user can perform any
ticketing operations. Ideally, you would like to restrict the access to only
those users who have been authenticated, and the user is authorized to
perform the operation.

As you install Django REST Framework, you need to include the REST _
FRAMEWORK section in the settings.py module of your project. Here,
you specify the global authentication schemes to be used. Let us include
BasicAuthentication and SessionAuthentication as the DEFAULT _
AUTHENTICATION_CLASSES:

REST_FRAMEWORK = {
"DEFAULT AUTHENTICATION CLASSES': (
'rest framework.authentication.BasicAuthentication',

277

CHAPTER 7 REST APl WITH DJANGO

'rest framework.authentication.SessionAuthentication',

Also, the DEFAULT_PERMISSION_CLASSES variable sets the
permission types globally.

REST_FRAMEWORK = {
'DEFAULT _PERMISSION CLASSES': [
'rest_framework.permissions.IsAuthenticated’,

To enforce the permission on the view, include the
permission_classes attribute in our TicketViewSet class (Listing 7-14).

Listing 7-14. permission_classes attribute
from rest framework.permissions import IsAuthenticated

class TicketViewSet(viewsets.ModelViewSet):
queryset = Ticket.objects.all()
serializer class = TicketSerializer
permission classes = [IsAuthenticated]

As aresult, the ‘tickets/’ endpoint responds with a 403 Forbidden
message. Obviously, this means that the client needs to log in as one of the
users in the User model in the contrib.auth package.

You can first visit the admin site URL, log in, and then fire a request to
the ‘tickets/” endpoint to get past the IsAuthenticated permission and
obtain the list of tickets as the response. Instead, you can add the login
view to the browsable API itself. Include rest_framework.urls in the
URLCONF of your project.

278

CHAPTER 7 REST APl WITH DJANGO

urlpatterns += [
path('', include('rest framework.urls')),

The browsable API shows a Login link toward the top right of the
browser, as the Figure 7-15 shows.

g @ [Ticket List— Django REST framew X + - 0O X

< 3 (D localhost:8000/myapi/tickets/

Api Root ' Ticket List

Ticket List

GET /myapi/tickets

HTTP 43 Forbidden

Allow: GET, POST, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

“detail”: "Authentication credentials were not provided.”

Figure 7-15. Unauthenticated request

This link takes the browser to the login page of the admin site. After
successfully logging in, the browser returns to the view protected with the
IsAuthenticated permission.

279

CHAPTER 7 REST APl WITH DJANGO

TokenAuthentication

Using BasicAuthentication is simple but poses a considerable security risk
as the user credentials are included with each request. Apart from testing
purpose, it is not advisable to be used in the production environment.

The other authentication scheme that DRF supports is
TokenAuthentication. It can be effectively implemented in situations
where client-server setups are required.

To enable this scheme globally, it should be added to the list of
DEFAULT_AUTHENTICATION_CLASSES:

REST_FRAMEWORK = {
"DEFAULT_AUTHENTICATION CLASSES': [
'rest_framework.authentication.BasicAuthentication',
'rest framework.authentication.SessionAuthentication',
'rest framework.authentication.TokenAuthentication',

Additionally, the list of INSTALLED_APPS should have the rest
framework.authtoken app added in it.

INSTALLED APPS = [

'rest framework.authtoken',

)

This app needs the authtoken model to be added to the current
database. Hence, you need to run the migrations:

python manage.py migrate
Operations to perform:

280

CHAPTER 7 REST APl WITH DJANGO

Apply all migrations: admin, auth, authtoken, contenttypes,
myapi, sessions
Running migrations:
Applying authtoken.0001 initial... OK
Applying authtoken.0002 auto 20160226 1747... OK
Applying authtoken.0003_tokenproxy... OK
Applying authtoken.0004 alter tokenproxy options... OK

To understand how the token authentication works, let us define a
function-based view in the views.py module. Unlike in the viewset, in a
function-based view, the authentication is enforced by the @permission_
classes annotation.

from rest framework.decorators import api view,
permission_classes

@api_view()

@permission classes([IsAuthenticated])

def authenticated view(request):
return Response({"message":"Hello, This is a
protected view"})

Obviously, you need to add a path that maps an endpoint (‘secured/’)
with this function. When visited, the authentication naturally fails, and you
get the HTTP 401 Unauthorized response with an appropriate WWW-
Authenticate header.

WWW-Authenticate: Basic realm="api"

Token authentication mechanism involves generating a token and then
including it as a Header in the request. A token is a long alphanumeric
string that is a unique identity of the user.

281

CHAPTER 7 REST APl WITH DJANGO

The TokenAuthentication class defines the obtain_auth token view,
which, when invoked with POST request, returns the token string. Let us
add a URL route that invokes this view in the URLCONF of the Django
project.

from rest framework.authtoken.views import obtain auth token
from myapi import views
urlpatterns += [
path('secured/', views.authenticated view),
path('api-token/', obtain_auth_token),

To generate the Auth token, log in to the admin site of your
Django application. You will find the AUTH TOKEN section in the site
administration page. Refer to the Figure 7-16.

| & @ [siteadministration | Djangosite . X - o x|
| =2 O (D localhost:B000/admin/ £ O S =1

Django administration

WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG OUT

Site administration

AUTH TOKEM i
Recent actions

Tokens + Add # Change

My actions
AUTHENTICATION AND AUTHORIZATION Mone available
Groups + Add Change
Users + Add " Change

Figure 7-16. Tokens model

282

CHAPTER 7 REST APl WITH DJANGO

Choose the admin user and save the Auth token generated for it
(Figure 7-17).

| &8 @ [AddToken|Djangositeadmin x + - 8 % |
&« O (@ localhost:8000/admin/authtoken/tokenproxy/add/ 7 o B

ration

WELCOME, ADMIN. VIEW SITE / CHANGE RD /L

Home » Auth Token » Tokens » Ad

Start typing ta filter.,

Tokens + Add ticer: .

Add Token

AUTHENTICATION AND AUTHORIZATION

Users + Add

Figure 7-17. Adding a token

283

CHAPTER 7 REST APl WITH DJANGO

As you can see in Figure 7-18, under the list of generated tokens, you'll

now find the token key corresponding to admin user.

| = @ D Select Token to change | Djange X +

= O (D localhost:8000/admin/authtoken/tokenproxy/

Home » Auth Toke|

ADD TOKEN 4

Select Token to change

Search

Q

Username

4 KEY USER CREATED =

9¢c9calbf12b06319ddc7763ebd1bb20d8fas5faf admin Oct. 29, 2024, 713 p.m.

1 Token

Figure 7-18. Token key

284

CHAPTER 7 REST APl WITH DJANGO

Now that the token is generated, go back and visit the endpoint
(Figure 7-19) that runs the protected view in your API; the browser displays
its response after it passes the authentication.

@ [3 Authenticated View—Django RE: X = = o x
>

-4
&

C (@ localhost:8000/secured/ 77 S |

Authenticated View

Authenticated View |

GET /secured

Allow: OPTIONS, GET
Content-Type: application/json

HTTP 200 OK ‘
Vary: Accept

"message”: "Hello, This is a protected view"

Figure 7-19. Authenticated view

285

CHAPTER 7 REST APl WITH DJANGO

You also have the option to use any third-party HTTP client. Here, we
use HTTPie to obtain the token, as the Figure 7-20 shows.

¥ HTTPie = O X

admin

admin

@ MNultipart

t POST Response 200

200 OK (9

Figure 7-20. Token generation with HTTPie

Then, include the generated token in the Authorization header when
visiting the URL to your protected view to obtain its response (Figure 7-21).

286

CHAPTER 7 REST APl WITH DJANGO

£ HTTPie = a X
aet localhost:8000/secur... x

http

Headers 1 Auth @ B

Token9c9calbf12b06319ddc7763ebd1bb..

st GET Response 200

200 OK (10

Figure 7-21. Authenticated response in HTTPie

You can generate the token Django’s drf_create token management
command made available by the 'rest framework.authtoken' app you
had included in the project’s settings. Execute the following statement in
the command terminal of your operating system. You need to specify the
user for which the token is to be created.

python manage.py drf create token admin
Generated token 9c9calbf12b06319ddc7763ebdibb20d8fa55faf for
user admin

287

CHAPTER 7 REST APl WITH DJANGO

While in the command terminal, this cURL command will fetch you
the response of the protected view in your API.

curl -H "Authorization: Token
9c9ca1bf12b06319ddc7763ebd1bb20od8fas5faf" http://
localhost:8000/secured/

{"message":"Hello, This is a protected view"}

In addition to these built-in authentication schemes, many third-party
Django apps are also available. For example, the djangorestframework-
simplejwt package is a JWT plug-in for Django REST Framework. It
implements the JSON Web Token (JWT) authentication. Then there is also
the django-oauth2 package that adds the OAuth2Authentication to your
DRF app. However, the discussion of these types of authentication has
been excluded from the scope of this book.

Alternatives to DRF

Django REST Framework is by far the most powerful Django app when

it comes to building REST APIs. It comes with all the necessary features
(such as authentication, permission handling, pagination, etc.). Having
said that, there are a few other Django packages for API creation, each with
its own distinct features.

Django Ninja is one such reusable app in the Django ecosystem. It
leverages the features of modern Python such as async support and type
hints to build high-performance and lightweight APIs. We shall explore
this app in the next section.

Tastypie has been in use as a tool for API development. However, it
hasn’t been able to match with DRF in offering a number of advanced
features.

288

CHAPTER 7 REST APl WITH DJANGO

The Graphene-Django package lets you develop GraphQL APIs rather
than REST APIs. Its ability to integrate with Django models is one of its
important features. We shall discuss Graphene-Django in a later chapter.

Django Channels is an ideal choice if you intend to have Python
applications having WebSocket support along with the regular REST API
endpoints. You will know more about Channels later in the book.

Django Ninja

This is one app that has been making rapid strides in the popularity
rankings of Django packages. Django Ninja, with its ability to leverage
Python features like async support and type hints, lets you build
lightweight yet high-performance APIs. Django Ninja is highly inspired by
FastAPI, another popular asynchronous web framework.

Like FastAPI, Django Ninja also uses Pydantic for request and
response data validation. Django Ninja also provides the auto-generated
API documentation with Swagger UI.

Let us go ahead and build a ticketing API with Django Ninja. To start
with, install it with the PIP utility.

pip install django-ninja

This installs the required dependencies - annotated-types, pydantic,
and typing-extensions.

Just like any other reusable app, add ninja to the INSTALLED_APPS list
(along with your testing API app named as api).

INSTALLED APPS = [

M |
'ninja‘,
‘api’,

289

CHAPTER 7 REST APl WITH DJANGO

An object of NinjaAPI class in the ninja package is the main application
object. It is responsible for managing the API endpoints, automatic
documentation, Pydantic integration, etc. Apart from the others, its
decorator methods - @api.get(), @api.post(), @api.put(), and @api.
delete() - help in defining the API endpoints.

These decorator methods map a given endpoint to a view function
defined just below it. Let’s define a /hello endpoint (refer Listing 7-15)
that, when visited with a GET request, calls the test () view function and
renders a Hello World response.

Listing 7-15. NinjaAPI object
from ninja import NinjaAPI
api = NinjaAPI()

@api.get("/hello")
def test(request):
return {'message’: 'Hello World!'}

As usual, you need to update the URLCONF of the Django project by
including the api/ as the base URL to the endpoints in your app.

from django.contrib import admin
from django.urls import path
from api.views import api

urlpatterns = [
path('admin/', admin.site.urls),
path('api/', api.urls)

As usual, you obtain the Hello World response with the
http://localhost:8000/api/hello route. One of the important features of
Django Ninja - the auto-generated API documentation will be available
http://localhost:8000/api/docs URL in the browser.

290

CHAPTER 7 REST APl WITH DJANGO

@ ¥ NinjaAPl x -+ = (] X

®
L)
< G @ locathost:8000/api/docs P) e

NinjaAP] ¥

default A

=@ /apifhello Test v

Figure 7-22. Swagger Docs

Test the GET response by executing the mapped method. The OpenAPI
(known as Swagger UI) documentation reveals the cURL equivalent
of the request, the response body along with the status code, etc.
The Figure 7-23 shows a typical Swagger Ul result.

291

CHAPTER 7 REST APl WITH DJANGO

S @ ¥ NinjaAP) % == - 0 X

&« G () localhost:8000/api/docsi#/default/api_views_test

curl -X 'GET" \

"http://localhost:8eee/api/hello” \
-H ‘accept: */*’

Request URL

http://localhost:8eee/api/hello

Server response

Code Details

e Response body

{

“"message”: "Hello World!"

}

Figure 7-23. Testing with Swagger Ul

However, you would like the API to send the HTTP requests to perform
CRUD operations on the Ticket model used earlier. To validate the data
returned by the server in response to GET requests, as well as the data sent
to the server as a part of the request body as a part of the POST request,
you need to define a subclass of Schema class, as in Listing 7-16. The
Schema class in Django Ninja is inherited from the BaseModel class in the
Pydantic library.

Listing 7-16. Ninja Schema

from datetime import datetime
from ninja import Schema

class TicketSchema(Schema):
flight number : str
passenger name : str

292

CHAPTER 7 REST APl WITH DJANGO

departure time : datetime
seat number : str

The tickets/ endpoint invokes the tickets() view when requested with
the GET method. The server response is the list of Ticket instances cast as a
list of TicketSchema objects.

from typing import List
from .models import TicketSchema, Ticket
@api.get("/tickets", response=List[TicketSchema])
def tickets(request):

return Ticket.objects.all()

The Swagger UI (refer Figure 7-24) shows that the tickets() view has
been mapped to the tickets/ URL.

S @ ¥ NinjaAP) % B - 0 X

e 5 (1) localhost:8000/api/docs

default A

GET Japi/tickets Tickets N

Schemas N

TicketSchema ~ object
flight_number* string
passenger_name* string
departure_time* string [{

seat_number* string

Figure 7-24. TicketSchema in Swagger Ul

293

CHAPTER 7 REST APl WITH DJANGO

You can test this endpoint to find its response body to be the list of
tickets with a 2000K as the status code, as displayed in Figure 7-25.

2 @ ¥ NinjaAP % == - 0
&~ C (D) localhost:8000/api/docs#/default/api_views_tickets
200

Response body

"seat_number":

"seat_number”:

"flight_number”
“passenger_na
"departure_time
"seat_number":

"flight_number"”:
"passenger_name”
"departure_time":
"238"

"seat_number”:

Figure 7-25. JSON response

Similarly, the create_ticket() view function handles the POST

"flight_number":
“passenger_name”
"departure_time”

"flight_number™:
"passenger_name”
"departure_time"

"AIle1",
: "John Doe",

": "2024-10-05T14:30:002",
"12a"

"EK183",

": "Jane Smith",
ok “2824-1@-85T87:308:00Z",
“32c"

9",
Alex wWall”,
2824-10-05T11:00:00Z",

es”

“AA1@1",
: "Alan wood”,
"2824-10-12T11:00:00Z",

E2 | Download

request. The response argument to the api.post() decorator specifies that

the server response has to be a newly created Ticket instance.

@api.post("/tickets", response={201: TicketSchema})
def create ticket(request, ticket: TicketSchema):
Ticket.objects.create(**ticket.dict())

return ticket

294

CHAPTER 7 REST APl WITH DJANGO

Figure 7-26 shows how it reflects in the Swagger UI documentation.

2 @ ¥ NinjaaPl x |+ = (] X
< G O localhost8000/api/docs G |
&
NinjaAPI
fapifopenapi.json
default A
m Japi/tickets Tickets N
Japi/tickets Create Ticket N
v

Figure 7-26. GET and POST endpoints in Swagger UI

Go ahead and test the POST endpoint (Figure 7-27). You need to
populate the request body as the data for a new Ticket object in JSON form.

295

CHAPTER 7 REST APl WITH DJANGO

| & @ - Ninjaap x P=F - 0 X

< O () localhost:8000/api/docs#/default/api_views_create t.. .7 CETI [|

Request body ™94"=" I application/json ~] -

"flight_number”: "PKle1",

"passenger_name"”: "Md. Yusuf",
"departure_time": "2824-1@-20T18:34:17.9252",
"seat_number": "eA"

L e IS
v

Figure 7-27. Request body in Swagger Ul

The Figure 7-28 shows that the Swagger UI generates 201 as the status
code with the newly added ticket in the response body.

296

CHAPTER 7 REST APl WITH DJANGO

[& @ NinjaaP % == - 0 X
= (@] () localhost:8000/api/docsi#/default/api_views_create_t
Request URL A

http://localhost:8000/api/tickets

Server response

Code Details

A0 Response body l

"flight_number”: “"string”,
"passenger_name”: "string”,

"departure_time": "2024-11-82T18:38:01.5537",
"seat_number": "string” ﬂ_ Download
} v

Figure 7-28. Response showing the creation of new resource

You can easily expand the code to add the other API endpoint tickets/
pk to process the remaining HTTP methods - GET, PUT, and DELETE.

Thus, Django Ninja offers a simple and lightweight alternative to the
DRF-based API. It also supports Python’s async capabilities. So you can
also write async views in your API. Django Ninja also provides the features
such as authentication, pagination, and throttling. Since this section is
intended to provide just an overview of Django Ninja, the more advanced
features are not discussed here.

297

CHAPTER 7 REST APl WITH DJANGO

Summary

This chapter covers an important aspect of modern web development -
the REST API. With the Django REST Framework as the API creation tool,
you learned how to add essential features such as authentication to your
API. You also had a brief introduction to Django Ninja - a new kid on
the block.

Next, we move on to another powerful API protocol - GraphQL -
and learn how to build Django apps that serve GraphQL queries with
Strawberry and Graphene.

298

CHAPTER 8

GraphQL with Django

For long, REST has been the go-to choice of developers for handling

efficient data exchange between the clients and the servers. However,

owing to the complex requirements of client-side applications that need

flexibility and efficiency in fetching the data, GraphQL has emerged as an

alternative API technology.

In this chapter, you are going to be introduced to the concepts of

GraphQL and how you can build powerful GraphQL-based API solutions

with the help of Django apps.

Some of the topics to be discussed in this chapter are

GraphQL vs. REST

GraphQL features

GraphQL architecture
Schema Definition Language
GraphQL and Python
Strawberry
Strawberry-Django
Graphene

Graphene-Django

© Malhar Lathkar 2025 299
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_8

https://doi.org/10.1007/979-8-8688-1472-3_8#DOI

CHAPTER 8 GRAPHQL WITH DJANGO

GraphQL vs. REST

Ever since Roy Fielding proposed the concept in the year 2000, REST has
been the de facto standard for developing API solutions. However, over a
period, developers started finding certain limitations and shortcomings
in the concept of REST. In certain situations, REST proves to be rather
inefficient. One must first understand these limitations and then find out
how GraphQL tries to address them.

While REST is an architectural style that defines how the web services
should interact with each other, GraphQL is a query language for APIs with
which a client can specify what data it needs.

In the case of a REST API, when the client sends a request to an
endpoint, it fetches the data that is either more or less than it requires.
This over-fetching or under-fetching introduces inefficiency. The GraphQL
AP], on the other hand, is capable of fetching the information exactly as
required.

As you have seen throughout, the REST application consists of
multiple endpoints and responds to different HTTP methods. In contrast,
the GraphQL API has only one endpoint for all types of operations on a
resource. REST relies on HTTP verbs (GET, POST, PUT, and DELETE) to
indicate the type of operation, whereas GraphQL requests use queries
for fetching data and mutations for creating new resources/modifying an
existing resource.

Having said that, REST and GraphQL APIs can be used
interchangeably. But as a thumb rule, GraphQL may be a better choice in
case of a limited bandwidth, as it minimizes the number of requests and
responses. It may also be helpful in situations where the client requests
vary significantly and you expect very different responses.

All in all, the differences between the two can be summarized as in
Table 8-1.

300

Table 8-1. REST vs. GraphQL

CHAPTER 8 GRAPHQL WITH DJANGO

REST

GraphQL

REST is a set of constraints that defines
structured data exchange between a
client and a server.

REST has multiple endpoints for various
operations on the resource.

REST returns data in a fixed structure
defined by the server.

With REST, the client must check if the
returned data is valid.

REST is good for simple data sources
where resources are well defined.

GraphQL is a query language, for APIs
with which a client can specify what data
it needs.

GraphQL has a single URL endpoint.

Data returned by a GraphQL query in a
flexible structure defined by the client.

With GraphQL, invalid requests are
typically rejected by schema structure.

GraphQL is good for large, complex, and
interrelated data sources.

Facebook (now Meta) started the development of GraphQL in 2012.
It has since been open-sourced and moved to GraphQL Foundation.

GraphQL is now being extensively used in many popular public APIs of

Facebook, GitHub, etc.

GraphQL Architecture

GraphQL specifications describe how a GraphQL server functions. In

most of the use cases, a GraphQL server interacts with a connected

database. The clients (web or mobile clients) communicate with the

server through the GraphQL API. The server fetches the resources from
the database in response to the GraphQL queries. Sometimes the server
acts as a layer in front of multiple systems and integrates them with the
GraphQL API. GraphQL is transport-agnostic, meaning it can operate over

301

CHAPTER 8 GRAPHQL WITH DJANGO

various protocols (such as HTTP, WebSocket, gRPC, etc.) depending on
the application’s requirements. Figure 8-1 schematically represents the
architecture of the GraphQL system.

Clients API Gateway Server

o |

~

Figure 8-1. GraphQL architecture

Schema Definition Language

In GraphQL, the structure of the API is written using the Schema
Definition Language (SDL). The GraphQL API itself comprises important
building blocks such as types, queries, mutations, subscriptions,

and schema.

Types

Types are equivalent of data types in any programming language. The data
objects to be queried are described in the form of types. There are two data
types in GraphQL; scalar types are the primitive types, and object types are
the user-defined data types.

302

CHAPTER 8 GRAPHQL WITH DJANGO

Scalar types are the predefined primitive types.
Int: A signed 32-bit integer

Float: A signed double-precision floating-

point number

String: A sequence of UTF-8 encoded characters
Boolean: True or false

ID: A unique identifier

Object types are similar to Python classes, representing complex
objects with one or more fields of either scalar types or other object types.
Listing 8-1 is an example of an object defined in GraphQL.

Listing 8-1. GraphQL type

type Book {
id: ID!
title: String!
author: String
price: Int

}

Book is a GraphQL Object type, meaning it’s a type with some fields. To
indicate that a field is of Not-Null type, SDL needs it to be post-fixed by an
exclamation mark (!).

The GraphQL Schema defines what different operations can be
performed on the given Object type. The Query operation defines the
ready-only fetch operations, and the Mutation operation defines the write
and update operations.

303

CHAPTER 8 GRAPHQL WITH DJANGO

Queries

Every GraphQL schema must support the query operation. The
composition of query lets the client decide exactly which fields are
expected to be retrieved from the server. This is precisely how a GraphQL
API avoids over-fetching and under-fetching issues faced with REST API.

A GraphQL query that fetches title and price of a Book type could be
written as shown in Listing 8-2.

Listing 8-2. GraphQL query

query {
book {
title
price
}
}

The query keyword indicates the retrieve operation, book being the
object type queried. The book query in the schema resolves to the Book
object. The inner pair of braces is the payload of the query, specifying the
fields to be fetched (title and price).

If the server had an instance of Book type (title="Numerical
Python", author="Johansan", and price=4000), the server response
might look like that shown in Listing 8-3.

Listing 8-3. Query result

{
"data": {
"book": {
"title": "Numerical Python",
author: "Johansan",
"price": 4000

304

CHAPTER 8 GRAPHQL WITH DJANGO

A query can include arguments if you want specific objects to be
fetched. For example, to fetch the book with a given id (provided you have
defined the Book type with id as one of its fields), the query would be as

shown in Listing 8-4.
Listing 8-4. Query with arguments

query {
book(id: "1") {
title
price
}
}

In this case, the server would resolve the query for the book with id = 1.

Mutations

Mutations are equivalent of the POST, PUT, and DELETE in the REST
APL. It clearly means that mutations are used to create, modify, or delete
data on the server.

Mutation fields are one of the root operation types that provide an
entry point to the API. The mutation keyword is used to define operations
for creating, modifying, as well as deleting the data.

Taking the example of Book type further, a mutation type to add a new
book is defined as that shown in Listing 8-5.

305

CHAPTER 8 GRAPHQL WITH DJANGO
Listing 8-5. GraphQL mutation

mutation {
createBook(title: "Numerical Python", author="Johansan",
price: 750) {
title
author
price

You can similarly define mutation types for updating and
deleting a book.

Subscriptions

Subscription allows a GraphQL server to push notifications of real-time
updates to the clients that subscribe to a specified event. Subscription is a
way to establish a long-lived connection between the client and the server.
Unlike in the case of the REST, where the client polls the server at intervals,
the server pushes updates to the client when specific events occur.

An example of GraphQL Subscription type is shown in Listing 8-6.

Listing 8-6. GraphQL subscription

subscription {
newBookAdded {
title
author
price

306

CHAPTER 8 GRAPHQL WITH DJANGO

Schema

A GraphQL schema is the blueprint that defines the structure, types, and
capabilities of a GraphQL API. The three root types - queries, mutations,
and subscriptions - are part of the schema definition. These root types act
as entry points for interacting with the GraphQL API.

The query type defines the structure for read operations in the API,
mutation defines the structure for write operations, while the subscription
type defines the structure for real-time updates.

For the Book type example, the GraphQL schema can be expressed as
shown in Listing 8-7.

Listing 8-7. GraphQL schema

type Query {
books: [Book]
book(id: ID!): Book
}
type Mutation {
addBook(title: String!, author: String, price: Int): Book

}

type Subscription {
bookAdded: Book

}
schema {
query: Query
mutation: Mutation
subscription: Subscription
}

307

CHAPTER 8 GRAPHQL WITH DJANGO

GraphQL and Python

It is possible to construct a GraphQL API service in any language, and the
core components of SDL (Schema Definition Language) can be built with
many different approaches.

Python, because of its clean syntax and ease of use, is found to be
extremely suitable. Python ecosystem has many excellent libraries like
Graphene, Strawberry, and Ariadne for implementing GraphQL APIs and
can be seamlessly integrated with the Django framework.

In this chapter, you'll explore how to use Strawberry and Graphene
libraries, especially their Django-specific apps Strawberry-Django and
Graphene-Django.

Graphene is a framework-agnostic Python library. It allows you to
define your schema and integrate queries, mutations, and subscriptions.
Graphene-Django is a popular Django reusable app, providing easy
integration with Django ORM models. It has adequate tools for connecting
Django’s authentication and permissions to GraphQL resolvers.

In comparison, Strawberry is a more recent library with which you can
leverage features of modern Python, such as type hints and async support.
Strawberry-Django is built on top of Strawberry.

Both these libraries take different approach toward GraphQL
implementation. Each one has its own design philosophy and features.

As far as the definition of GraphQL schema is concerned, in Graphene,
a schema is defined using Python classes. Strawberry, on the other hand,
makes use of Python’s @dataclass decorator for defining types. This lets
you leverage the feature of type hints, making it more intuitive.

Graphene has its own field types (graphene.String, graphene.Int,
etc.), while Strawberry uses Python'’s native type hints for field definitions,
making it more natural and readable. This, as a result, enhances the type
safety and integrates well with Python’s type-checking tools.

308

CHAPTER 8 GRAPHQL WITH DJANGO

Graphene has been around for a while. The graphene-django package
is a popular choice among developers to integrate GraphQL in a Django
app. Strawberry is comparatively recent, but making rapid strides in
the popularity charts owing to its ability to support powerful features
of modern Python such as dataclass, type hints, and asynchronous
processing.

Programming languages and their libraries adapt either a code-first
approach or a schema-first approach for defining the GraphQL schema. In
the code-first approach, the schema is defined programmatically in classes
or functions representing types, queries, mutations, and resolvers. The
schema is automatically generated from the code. On the other hand, the
schema is written using the GraphQL Schema Definition Language (SDL).
The resolvers are implemented in the corresponding language, followed by
connecting the schema and the resolvers. Strawberry uses the code-first
approach, whereas a hybrid approach is adopted by Graphene.

Strawberry

As mentioned earlier, Strawberry is a library for GraphQL API
development, based on modern Python (Python 3.8 onward). It supports
all the latest features of Python including type hints, async support,
dataclasses, generics, etc. These features help you in building high-
performance, nonblocking GraphQL APIs.

Naturally, one has to start by getting Strawberry installed in the current
working environment. Use PIP installer to install strawberry-graphql
package from PyPI repository. One of the unique features of Strawberry is
that it also provides a development server (similar to Django development
server) to test the GraphQL API in an interactive playground. So install
Strawberry along with the development server with the following command:

pip install "strawberry-graphql[debug-server]

309

CHAPTER 8 GRAPHQL WITH DJANGO

It has also been mentioned earlier that Strawberry uses the code-first
approach for defining GraphQL schema. The @strawberry.type decorator
is the cornerstone of Strawberry’s code-first approach. Put this decorator
on top of a Python class and it will be transformed into a GraphQL
object type.

You can, therefore, define a Book type with the code in Listing 8-8.

Listing 8-8. Strawberry type
import strawberry

@strawberry.type

class Book:
title: str
author: str
price: int

Strawberry coverts the Book class into the corresponding GraphQL
object type with fields: title, author, and price.

The type annotation feature of Python lets you indicate the expected
data type when you define an attribute. The Python types (str and int) are
mapped to their corresponding GraphQL types (String and Int).

The generated GraphQL schema would be

type Book {
title: String!
author: String!
price: Int!

}

The Query type is similarly defined by decorating the Query class
with the @strawberry.type decorator. To fetch a Book object, you need
to define a resolver function. It must be decorated by the @strawberry.
field decorator, as in Listing 8-9.

310

CHAPTER 8 GRAPHQL WITH DJANGO

Listing 8-9. Strawberry Query

@strawberry.type
class Query:
@strawberry.field
def book(self) -> Book:
return Book(title="Numerical Python",
author="Johansan", price = 750)

The schema object is obtained by calling the strawberry.Schema()
constructor and passing the Query type to it as an argument.

schema = strawberry.Schema(query=Query)

Strawberry package comes with an embedded development server
with which you can test and debug your API in the GraphQL playground.

Put the above code for Book type and Query type in a Python script
(Listing 8-10) app.py.

Listing 8-10. app.py (Strawberry schema)

import strawberry

@strawberry.type

class Book:
title: str
author: str
price: int

@strawberry.type
class Query:
@strawberry.field
def book(self) -> Book:
return Book(title="Numerical Python",
author="Johansan", price: 750)

schema = strawberry.Schema(query=Query)

311

CHAPTER 8 GRAPHQL WITH DJANGO

Start the Strawberry server with the following command:

>strawberry server app
Running strawberry on http://0.0.0.0:8000/graphql

Open your browser and point it to the URL http://localhost:8000/
graphq]l to start GraphiQL - a browser-based user interface with which you
can interactively execute queries against a GraphQL API.

Display the explorer bar of the interface, and add a new Query by the
name NewQuery. Select the required fields to be fetched. (Select all the
fields for now.) It will generate the following GraphQL query code:

query NewQuery {
book {
author
price
title

Click the ’ button to run the query. The result will be displayed in the
output pane on the right (as in Figure 8-2).

2 @ @ Swawberry GraphiCh x = o %
< O (D locathost:8000/graphgl I |
Explorer o + GraphiaL
ewluery
query New(uer - i u :
book
© author i
= ©pric :
O title)
“titl

Figure 8-2. GraphiQL interface

312

CHAPTER 8 GRAPHQL WITH DJANGO

Let us add a mutation type to the AP], as in Listing 8-11. Strawberry
provides the @strawberry.mutation decorator to be put on top of the
function inside the Mutation class

Listing 8-11. app.py (Strawberry mutation)

@strawberry.type
class Mutation:
@strawberry.mutation
def add book(self, title: str, author: str, price: int)
-> Book:
print(f"Adding new book: {title}")

return Book(title=title, author=author, price=price)

Start the server again and run the GraphQL mutation in the GraphiQL
interface.

mutation NewMutaton {
addBook (author: "Johansan",
price: 750,
title: "Numerical Python")
{
author
price
title

Update the declaration of the Schema object by including the mutation
argument in its constructor.

schema = strawberry.Schema(query=Query, mutation=Mutation)

313

CHAPTER 8 GRAPHQL WITH DJANGO
The browser displays the result as shown in Figure 8-3.

| 2@ ¥ Strawberry Graphiol w4+ - o *
| « O (i) localhost yraph - | &
Explorer

ion wutat

©00000: :

o
=
€

o
Figure 8-3. GraphiQL showing mutation

You can make the definition of query and mutation more flexible by
defining resolver functions with arguments and passing their values while
executing the schema. To define a variable, Strawberry requires it to be
prefixed by the $ symbol.

The NewMutation type (in Listing 8-12) accepts three variables: $title,
$author, and $price (first two of String! and the third of Int! type). The
addbook() resolver then uses them to initialize the fields.

Listing 8-12. Mutation with variables

mutation NewMutaton(
$title:String!,$author:String!, $price: Int!
) {
addBook(title: $title,
author: $author,
price: $price)

{

314

CHAPTER 8 GRAPHQL WITH DJANGO

author
price
title

The values for these variables are assigned in the variables editor
section at the bottom of the GraphiQL interface.

{
"title": "Numerical Python",

"author": "Johansan",
"price": 750

On running the schema, the output is displayed as shown in Figure 8-4.
2 @ ® Stawberry GraphiOl » - =] x
|l O) lacalhost:8000/graphs) Y @
. mutation Newdutator I:' T SpGL
pr
Variables feaders
e

Figure 8-4. GraphiQL interface with Variable editor

315

CHAPTER 8 GRAPHQL WITH DJANGO

A GraphQL schema can have more than one query and mutation -
especially for update and delete operations. The resolver functions
usually consist of business logic that adds, updates, or deletes records in a
connected database table.

Strawberry-Django is an ideal Django package to build a data-driven
GraphQL API. Strawberry has various ports for seamlessly integrating
with various other Python web frameworks such as Flask and FastAPI. In
the next section, you will explore how to add Strawberry to a Django
application.

Strawberry-Django

The integration of GraphQL with Django is facilitated by the Python package

Strawberry-GraphQL-Django. This package makes it very easy to generate

GraphQL types, queries, mutations, and resolvers from the Django’s ORM.
Start by installing this package with the PIP utility.

pip install strawberry-graphqgl-django

As usual, start a new Django project and an app. Add the 'strawberry.
django' app along with your app in the INSTALLED_APPS list.

INSTALLED APPS = [

)

'strawberry.django’,

'myapi’,

Strawberry-Django provides a built-in view called AsyncGraphQLView.
Itis defined in the strawberry.django.views module and is specifically
designed to handle asynchronous GraphQL requests in Django
applications. A standard synchronous counterpart of this view -
GraphQLView - is also available in the same module.

316

CHAPTER 8 GRAPHQL WITH DJANGO

To serve the Schema object (as defined in the app.py script above),
you need to add AsyncGraphQLView in the URLCONF of your Django project.
Modify your project’s urls.py as per the code in Listing 8-13.

Listing 8-13. URLCONF with AsyncGraphQLView

from django.contrib import admin

from django.urls import path

from strawberry.django.views import AsyncGraphQLView
from myapi.app import schema

urlpatterns = [
path('admin/', admin.site.urls),
path('graphql', AsyncGraphQLView.as view(schema=schema)),

Make sure that the app.py script is present in the myapi package folder.
If you start the Django development server, the URL http://localhost:8000/
graphql/ now serves the GraphQL API, and you can test the query and
mutation as done earlier.

The Strawberry-Django app brings much more functionality than
just the ability to serve the core Strawberry at the URL mapped to the
GraphQLView. The @strawberry django.type decorator defined in this
package is extremely powerful. It extends the functionality of the core
Strawberry’s @strawberry.type decorator by integrating with Django
models, allowing automatic mapping of model fields to GraphQL fields
when you need to define GraphQL types based on Django models.

Let us use the same book model in for a new Django project that uses
the Strawberry-Django app to build a GraphQL API and add a functionality
to perform CRUD operations on the mapped SQLite database table.

Instead of @strawberry.type, use the @strawberry django.type
decorator to map a BookType class to a GraphQL type. Pass the book model
as an argument.

317

CHAPTER 8 GRAPHQL WITH DJANGO

Listing 8-14 shows the code for models.py in the app.

Listing 8-14. models.py

from django.db import models
import strawberry django
import strawberry

Create your models here.

class Book(models.Model):
id = models.IntegerField(primary key=True)
title = models.CharField(max_ length=50)
author = models.CharField(max_length=50)
price = models.IntegerField()
publisher = models.CharField(max_length=50)

class Meta:
db_table = "books"

@strawberry django.type(Book)
class BookType:

id: strawberry.ID

title: str

author: str

price: int

publisher: str

In the earlier case, you had defined a query class (decorated by
@strawberry.type which you will now replace by @strawberry django.
type) and defined a resolver function in it to return Book objects. In the
strawberry-Django package, the @strawberry django.field decorator
automatically handles fetching data for the specified model fields. The
Django model fields are mapped directly to GraphQL fields. As such, you
don’t need to write resolvers for basic fetch operations.

318

CHAPTER 8 GRAPHQL WITH DJANGO

Listing 8-15 shows how a query is defined for the Django app
implementing a GraphQL APL

Listing 8-15. Query with strawberry_django.field()

import strawberry
@strawberry.type
class Query:
all books: list[BookType] = strawberry django.field()

That’s it. The all_books field effectively acts as the resolver function
decorated by @strawberry.field in the core strawberry example. Obtain
the Schema object, using the above Query class as an argument.

schema = strawberry.Schema(query=Query)

Start the Django server, and enter the following code in the query
designer of the GraphiQL interface:

query MyQuery{
allBooks {
id
title
author
publisher
price

319

CHAPTER 8 GRAPHQL WITH DJANGO

The selected fields from all the records in the books table in your
database will be fetched, as shown in Figure 8-5.

2 @ 9 StewberyGraphil ® |+ - (=] x
& C O locahost2000/graphl - - @
-

Explorer

query

a

n + GraphiQL
query MyQuer -

"allBooks

) | B

author®

"price”

“publisher

Add new| Quaery « v Variables

Figure 8-5. Query fetching books from the database

You can also apply filter criteria on the retrieved data. You need to first
define input types by using the @strawberry.input decorator (refer
Listing 8-16) and use it as the filter criteria in the query field.

Listing 8-16. Filtered query

@strawberry.input
class BookFilterInput:
id: strawberry.ID

@strawberry.type

class Query:
all books: list[BookType] = strawberry django.field()
book by id: BookType | None = strawberry django.field
(filters=BookFilterInput)

The above query type defines two query fields: one to retrieve all books
and the other a book with the given id. To test this filtered query, enter the

following in the query designer. Check the query code and the output in
Figure 8-6.

320

CHAPTER 8 GRAPHQL WITH DJANGO

8 @ @ StewberyGraphial » [= o o
&~ O T localhost:2000/graphg| ’ - @3
a |
Explorer

query Myluer

n + GraphiQL

I

Variables

Figure 8-6. Result of the filtered query

You can make it dynamic by using Strawberry variables in the query
and inserting the values from the variables section at the bottom.

Adding mutation to the schema is similar. Just like the Query type,
define a Mutation class decorated by the @strawberry.type decorator.
Inside the class, define a createBook() function, which is again decorated
by @strawberry_ django.mutation. Pass the values of the model fields as
the arguments, and call the create() method of the Django ORM API.
The Listing 8-17 defines the Mutation class.

Listing 8-17. Mutation to add book

@strawberry.type
class Mutation:
@strawberry django.mutation
def create book(self, title: str, author: str, price: int,
publisher: str) -> BookType:
return Book.objects.create(title=title, author=author,
price=price, publisher=publisher)

In the GraphiQL interface, form a createBook mutation and pass
values. The output pane shows (in Figure 8-7) the JSON version of the
new book.

321

CHAPTER 8 GRAPHQL WITH DJANGO

8 @ @ SvewberyGraphiol x4+ = o x
€& T (D localhost:2000/graphg) N C | :
Explorer u ¢ GraphiQL
mutation MyMutation A
mutati tion crEstaBnok !

o

Variables Headers

Lo

000 00000;

publisher
itle

L w

Figure 8-7. GraphlQL output of createBook mutation

To confirm, go back to the SQLite viewer; a new book will have been
added. You can also add an update_book() function with relevant code for
updating the data of a book record of a specified id and delete book() to
delete a book from the database.

Graphene

Graphene is another popular Python library for GraphQL implementation.
It is a little opinionated as compared to Strawberry, in the sense that
it adapts a schema-first approach rather than Strawberry’s type-first
approach. Also, Graphene doesn’t fully support modern features such as
type hints, dataclasses, async, etc. Having said that, Graphene is a mature
and robust package. It can be easily integrated with Python’s Django
framework and Relay, a React-based client library for GraphQL.

Before you start exploring the features of Graphene, you need to install
itin the current Python environment.

pip install graphene

322

CHAPTER 8 GRAPHQL WITH DJANGO

Graphene’s type system is a little different from that of Strawberry.
Graphene has its own built-in scalar types that map to the corresponding
GraphQL scalar types.

graphene.String corresponds to String type in GraphQL.

graphene.Int maps with GraphQLs Int type.

graphene.Float is equivalent to Float in GraphQL.

graphene.Boolean indicates Boolean type in GraphQL.

graphene.ID is used to represent ID type in GraphQL.

graphene.List is also a scalar type. It is a collection of objects of
other scalar types or even other object types, for example, graphene.
List(Book), where Book is a Graphene object type.

A Graphene ObjectType defines the relationship between the fields in
your Schema. It acts as the building block of the GraphQL API.

To define an object type, you need to have a Python class with
its attributes of any of the above scalar types and extend Graphene’s
ObjectType class. Each attribute represents a Field.

Listing 8-18 defines a Graphene object type named Book.

Listing 8-18. Graphene ObjectType
import graphene

class Book(graphene.ObjectType):
title = graphene.String()
author = graphene.String()
price = graphene.Int()
publisher = graphene.String()

323

CHAPTER 8 GRAPHQL WITH DJANGO

Let us use an in-memory database of books in the form of a Python list
for testing the APIL.

books = [
{"title": "Beginning Django", "author": "Rubio",
"price":3053, "publisher":"Apress"},
{"title": "Pro Django", "author": "Alchin", "price":4284,

"publisher":"Apress"},

A Query type is also a Python class that extends ObjectType. Each field
in the query type should have a corresponding resolver method to fetch
data. This resolver method should match the field name. When a client
queries a field, Graphene looks for the corresponding resolver method and
returns the value.

Here is the Query class (Listing 8-19) with a field all_books, whichis a
list of all the objects of book type.

Listing 8-19. Graphene query

class Query(graphene.ObjectType):
all books = graphene.List(Book)

Inside this class, you need to define a resolver method - resolve all
books (). The two mandatory arguments each resolver method should
have are

root: The parent object, useful for resolving fields of
nested types

info: An info object that contains context about
the execution state, including the request, user,
and schema

324

CHAPTER 8 GRAPHQL WITH DJANGO

Additionally, you can have a resolver with a variable number of
arguments (**kwargs).

Accordingly, a resolve all books () resolver should be defined inside
the Query class, as in Listing 8-20. It returns the books list.

Listing 8-20. Graphene resolver function

Resolver to fetch all books
def resolve all books(root, info) -> List[Book]:
return books

As in the case of Strawberry code, get a Schema object, this time
by passing the Query type as the argument to the graphene.Schema()
constructor:

schema = graphene.Schema(query=Query)

Unlike Strawberry, Graphene doesn’t come bundled with its own
development server. So to test the query, you will have to create a /graphql
endpoint for a Python web app based on Flask or Django and serve the
schema on that endpoint. While you will be accessing the Graphene
schema with the Django server in the next session, for now, let us use the
schema.execute() function.

The execute() function needs one mandatory string argument
that represents a query (or mutation or subscription). It returns the
ExecutionResult containing any data and errors for the operation.

The query to be executed may be constructed as

query string = "'
query {

allBooks {

title

author

325

CHAPTER 8 GRAPHQL WITH DJANGO

price
publisher

Pass this query_string to the execute() function:
result = schema.execute(query string)

Here is the result, based on the books list defined earlier:

{
"allBooks": [
{
"title":"Beginning Django",
"author":"Rubio",
"price":3053,
"publisher":"Apress"
})
{
"title":"Pro Django",
"author":"Alchin",
"price":4284,
"publisher":"Apress"
}
]
}
Let us add one more field to the query, to fetch books by a specific
author as

books by author = graphene.List(Book, author=graphene.
String(required=True))

326

CHAPTER 8 GRAPHQL WITH DJANGO

The corresponding resolver function returns the corresponding book
object with matching value for the author field.

Resolver to fetch books by a specific author
def resolve books by author(root, info, author: str) ->
List[Book]:

return [Book(**book) for book in books if

book["author"] == author]

The required string to test this query is

query string = "'

query {
booksByAuthor (author: "Alchin") {
title
author
}
}

result = schema.execute(query string)

You should get the result as

{
"booksByAuthor": [
{
"title":"Pro Django",
"author":"Alchin"
}
]
}

327

CHAPTER 8 GRAPHQL WITH DJANGO

Let us now add mutations in the schema. In Graphene, a mutation type
is a class that extends graphene .Mutation. The CreateBook mutation (as
in Listing 8-21) adds a new book in the books list. Inside this class, include
an inner Arguments class with its attributes needed for resolving the Book
type fields. The mutate () method is a resolver, invoked once the mutation
is called. It takes the same arguments as the query Resolver. In this case,
the mutate() method adds a new book to the list.

Listing 8-21. Graphene mutation

class CreateBook(graphene.Mutation):
class Arguments:
title = graphene.String(required=True)
author = graphene.String(required=True)
price = graphene.Int(required=True)
publisher = graphene.String(required=True)

book = graphene.Field(Book)

def mutate(self, root, info, title: str, author:str,
price:int, publisher:str) -> "CreateBook":
new book = {"title": title, "author": author,
"price":price, "publisher":publisher}
books .append(new_book)
return CreateBook(book=Book(**new_book))

An object type Mutation with create_book as a field whose value is
obtained with the Field() attribute of the CreateBook mutation.

class Mutation(graphene.ObjectType):
create book = CreateBook.Field()

Update the schema by adding the mutation parameter.

schema = graphene.Schema(query=Query, mutation=Mutation)

328

CHAPTER 8 GRAPHQL WITH DJANGO

As before, the schema.execute() returns the result of this mutation
when the appropriate query string is passed, like the one in Listing 8-22.

Listing 8-22. Mutation string

mutation_string = "'
mutation {
createBook(title: "Numerical Python", author:
"Johansan", price: 4000, publisher:"Springer") {

book {
title
author
price
publisher
}

result = schema.execute(mutation string)
You can expect a result to be

{
"createBook":{
"book": {
"title":"Numerical Python",
"author":"Johansan",
"price":4000,
"publisher":"Springer"
}
}
}

329

CHAPTER 8 GRAPHQL WITH DJANGO

Following the similar approach, you may define the mutations for
updating and deleting a book (CreateBook and DeleteBook classes
extending graphene.Mutation) and add them as fields in the Mutation
type. You may refer to the code for this part available on the code
repository of this book.

In this exercise, a Python list of books has been used as an in-memory
database. In reality, a more persistent database such as a SQLite database
will be used. Graphene-Django integrates Graphene with Django, which
helps to build robust Django-based data-driven GraphQL APIs.

Graphene-Django

Graphene has been integrated with different Python frameworks including
Django (others being Flask, FastAP], etc.). Its additional abstractions are
extremely useful for building a Django app that implements the GraphQL
protocol.

Start building a Django-based GraphQL API by installing Graphene-
Django package.

pip install graphene-django
As you would expect, you have to add 'graphene_django' along with

the django app ('myapi') to the INSTALLED_APPS setting of the Django
project.

INSTALLED APPS = [

'graphene_django',
'myapi',

330

CHAPTER 8 GRAPHQL WITH DJANGO

There is one more configuration to be made to the project’s setting.
You have to specify the location of your schema.

GRAPHENE = {
"SCHEMA': 'myapi.schema.schema'

This SCHEMA key lets Django know where to find the root schema
object (Schema) for your GraphQL API. Note that such setting is not
necessary in Strawberry-Django. From the above, it is clear that the
schema.py script in the myapi app package folder will have the declaration
of schema object.

Since we intend to build the GraphQL API around a database, there
should be a model defined in the Django application. The by now familiar
Book model will be used in this discussion.

Like you did in the case of the strawberry-django example, you
have to define an object type. Instead of the graphene.ObjectType, the
GraphQL type will be obtained by extending the graphene_django.
DjangoObjectType class.

The DjangoObjectType class makes it easy to expose Django models in
your GraphQL API. As such, the type fields will be directly picked from the
attributes of the Django model. Enter the script shown in Listing 8-23 in
the schema.py file (in the myapi folder).

Listing 8-23. DjangoObjectType

from graphene django import DjangoObjectType
from .models import Book

Define a GraphQL type for the Book model
class BookType(DjangoObjectType):
class Meta:
model = Book
fields = ("id", "title", "author", "publisher", "price")

331

CHAPTER 8 GRAPHQL WITH DJANGO

Defining the queries is more or less similar to what was done in the
core Graphene example, except the resolver resolve _all books() calls
the objects.all() method on the model to return a list of books in the
table (Listing 8-24). Similarly, the resolve_book() resolver retrieves a
book of the specified primary key.

Listing 8-24. Query for graphene_django

class Query(graphene.ObjectType):
all books = graphene.List(BookType)
book = graphene.Field(BookType, id=graphene.Int())

def resolve all books(self, info):
return Book.objects.all()

def resolve book(self, info, id):
try:
return Book.objects.get(pk=1id)
except Book.DoesNotExist:
return None

All you have to do now is to define an endpoint /graphqgl in the
URLCONF of the Django project so that it presents the GraphiQL interface
in the browser. Just as strawberry-django, the graphene-django app also
provides an inbuilt view called GraphQLView and maps it with the /graphql
endpoint inside the urls.py module (refer Listing 8-25).

Listing 8-25. URLCONF for graphene_django

from django.contrib import admin
from django.urls import path

from graphene_django.views import GraphQLView

332

CHAPTER 8 GRAPHQL WITH DJANGO

urlpatterns = [
path('admin/', admin.site.urls),
path('graphql/', GraphQLView.as view(graphiql=True)),
Enable GraphiQL interface

You are now ready to test the GraphQL queries that fetch the list of
books and retrieve a single book. Fire the Django development server and
visit the graphql endpoint.

To add a mutation to this API, follow the same logic implemented
in the core Graphene example. Define the CreateBook class, and extend
graphene.Mutation.

Inside the inner Arguments class, define the same attributes as in the
Book model.

Define the mutate() method which takes values to match with the
arguments, and uses them in the create() method of the Django model
to actually add a new Book object in the corresponding books table in the
database.

Define a Mutation type with create_book as a field, as in Listing 8-26.

Listing 8-26. Mutation for graphene_django

Define Mutations
class CreateBook(graphene.Mutation):
class Arguments:
title = graphene.String(required=True)
author = graphene.String(required=True)
publisher = graphene.String(required=True)
price = graphene.Int(required=True)

book = graphene.Field(BookType)

333

CHAPTER 8 GRAPHQL WITH DJANGO

def mutate(self, info, title, author, publisher, price):
book = Book.objects.create(
title=title,
author=author,
publisher=publisher,
price=price
)

return CreateBook(book=book)

class Mutation(graphene.ObjectType):
create book = CreateBook.Field()

Make sure you update the Schema object by adding the mutation
parameter.

schema = graphene.Schema(query=Query, mutation=Mutation)

You are now ready to test the mutation as well. As an exercise, add the
update as well as delete mutations to the schema. You can refer to the code
available in the repository of this book in case of any doubt.

Summary

This chapter has been a journey of exploring the world of GraphQL and
its implementation in Python and Django. You learned how the GraphQL
protocol is implemented with two widely popular Python libraries,
Strawberry and Graphene, and their Django extensions. Subscriptions
and other features such as authorization have not been discussed here.
Interested readers are encouraged to explore the official documentation
and other resources to learn about these aspects.

334

CHAPTER 9

WebSockets
with Django

One of the major limitations of the HTTP protocol is that it is a strictly
unidirectional protocol, in the sense that the client has to first send a
request in response to which any data is sent from the server. Also, the
fact that HTTP is a stateless protocol necessitates the connection to be
re-established for each subsequent request. The WebSocket protocol
overcomes these limitations and enables a simultaneous two-way
communication channel over a single Transmission Control Protocol
(TCP) connection. In this chapter, you will be introduced to handling the
WebSocket protocol in Python in general and Django in particular with the
help of its Channels app.

This chapter covers the following topics:

e WebSocket protocol
e WebSocket in Python
e Django Channels

o Consumers

¢ Routing

© Malhar Lathkar 2025 335
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_9

https://doi.org/10.1007/979-8-8688-1472-3_9#DOI

CHAPTER9 WEBSOCKETS WITH DJANGO

e Channel layers
e WebSocket client template

¢ Login/logout

WebSocket Protocol

The term “WebSocket” was first used by Ian Hickson and Michael Carter
in 2008. WebSocket uses HTTP as the initial transport mechanism,

but because the TCP connection is kept alive after the HTTP response

is received, WebSocket makes it possible to send message-based

data, similar to UDP, at the same time ensuring the reliability of

TCP. Figure 9-1 illustrates how the Websocket protocol works.

k)
HTTP Request
Client -
Handshake Server
. >
WebSocket connection

Figure 9-1. WebSocket protocol

The WebSocket URIs use a new scheme ws:// (or wss:// for a secure
WebSocket). A WebSocket communication actually starts on an HTTP
connection. If the client wants to upgrade the normal HTTP connection,
it should include a connection header to upgrade, the Upgrade header
itself set to WebSocket to indicate its intent to establish a WebSocket
connection. The Sec-WebSocket-Key header is a base-64 encoded 16-
bit value.

336

CHAPTER9 WEBSOCKETS WITH DJANGO

A typical GET request from an HTTP client to a ws:// URI might look
like this:

GET ws://example.com:8765/ HTTP/1.1

Host: localhost: 8765

Connection: Upgrade

Pragma: no-cache

Cache-Control: no-cache

Upgrade: websocket

Sec-WebSocket-Version: 13
Sec-WebSocket-Key: qg4xkc032u266gldTuKaSOw==

If and when the server accepts this handshake extended by the client,
its response code is HTTP 101 Switching Protocols, implying that the
server is switching to the WebSocket protocol as requested by the client.

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: fA9dggdnMPU791JgAE3W4TRnyDM=

This provides a two-way full-duplex communication channel between
the two that doesn’t get disconnected after every transaction and is
suitable for real-time applications. One of the major departures from
HTTP is that either the client or the server can choose to send a message at
any time.

Any server-side application written in a programming language (such
as Python) that is capable of Berkeley sockets can act as a WebSocket
server. The server waits for incoming socket connections using a standard
TCP socket.

Note that the client still has to start the WebSocket handshake process
by contacting the server and requesting a WebSocket connection.

To initiate WebSocket communication, you need to create a
WebSocket object.

337

CHAPTER9 WEBSOCKETS WITH DJANGO

Listing 9-1. WebSocket object
const ws = new WebSocket('ws://localhost:8765");

This sends a handshake request to the server. Once accepted, the
readyState property of the WebSocket object will become OPEN, and the
connection is ready to transfer data. You can now begin transmitting data
to the server.

To do this, call the WebSocket object’s send() method once
a connection is established by defining an onopen event handler,
as in Listing 9-2.

Listing 9-2. Sending message

ws.onopen = (event) => {
ws.send("some message");

b

When the client receives messages, a onmessage event handler is sent
to the WebSocket object to begin listening for incoming data (Listing 9-3).

Listing 9-3. Receiving message

ws.onmessage = (event) => {
console.log(event.data);

};

WebSocket and Python

While you can use JavaScript inside a web page that works as a WebSocket
client, you need to write the server in a language that supports BSD
sockets. A Python library called websockets helps in building a WebSocket
server as client application. It provides a coroutine-based API; hence, it
allows the WebSocket server to handle multiple clients asynchronously.

338

CHAPTER9 WEBSOCKETS WITH DJANGO

The websockets library depends on asyncio and requires Python
version 3.9 or newer. Use PIP to install it in the current environment.

pip install websockets

The serve() method of the server class in the websockets.asyncio
module starts the WebSocket server (refer Listing 9-4). It needs a handler
coroutine, the host, and a port number on which it starts listening to the
incoming requests.

Listing 9-4. Starting the WebSocket server

from websockets.asyncio import server
server.serve(handler, host, port)

Whenever a new client sends a connection request, the server creates a
WebSocket connection object, which is passed to the handler.

To keep the server in an event loop that runs forever, use the create
future() function (Listing 9-5).

Listing 9-5. WebSocket server loop

async with serve(handler, "localhost", 8765):
await asyncio.get running loop().create future()

The websocket object (actually it is an instance of
WebSocketServerProtocol) is passed to the asynchronous handler
coroutine. The send() and recv() methods let you to send and receive
messages to and from the WebSocket client.

To handle continuous communication between the server and the
client, an async for loop is used.

async for message in websocket:

The receive and send actions are often enclosed inside a try - except
block. Listing 9-6 shows the code for the handler coroutine.

339

CHAPTER9 WEBSOCKETS WITH DJANGO

Listing 9-6. WebSocket Handler

async def handler(websocket):
try:
async for message in websocket:
print(f"Received: {message}")
msg=input("enter server message: ")
await websocket.send(f"Server says: {msg}")
except Exception as e:
print(f"Connection closed: {e}")

Listing 9-7 shows the complete code for setting up a WebSocket server
capable of receiving messages from a client and sending back its own

message.

Listing 9-7. WebSocket server code

import asyncio
from websockets.asyncio.server import serve

async def wshandler(websocket):
print("Client connected")
try:
async for message in websocket:
print(f"Received: {message}")
msg=input("enter server message: ")
await websocket.send(f"Server says: {msg}")
except Exception as e:
print(f"Connection closed: {e}")

async def main():
async with serve(wshandler, "localhost", 8765):
await asyncio.get running loop().create future()
Run forever

340

CHAPTER9 WEBSOCKETS WITH DJANGO

if _name__ == " main_":
asyncio.run(main())

Python’s WebSocket client calls the connect () method of the client
class defined in the websockets.asyncio module. To enable the client
to send and receive messages in a loop, you can use a while loop (as in
Listing 9-8) within the async with block of the WebSocket client.

Listing 9-8. WebSocket client code

import asyncio
from websockets.asyncio.client import connect

async def client logic():
uri = "ws://localhost:8765"
async with connect(uri) as websocket:
print("Connected to the server. Type 'exit' to quit.")
while True:
Get user input
message = input("Enter a message: ")

Exit condition

if message.lower() == "exit":
print("Closing connection.")
break

Send message to the server
await websocket.send(message)
print(f"Sent: {message}")

Wait for response from the server
response = await websocket.recv()
print(f"Received: {response}")

341

CHAPTER9 WEBSOCKETS WITH DJANGO

if _name_ ==" main_":
asyncio.run(client logic())

To test the interaction, run the server and client codes in two separate
terminals (start the server first). As the client’s request is accepted, the
two-way communication begins.

Server terminal:

python ws_server.py

Client connected

Received: Hello Server

enter server message: Hi client

Client terminal:

python ws_client.py

Connected to the server. Type 'exit' to quit.
Enter a message: Hello Server

Sent: Hello Server

Received: Server says: Hi client

To establish WebSocket connection from a browser, you can open a
web page in which a JavaScript function logs messages from the server in
response to the onmessage event and sends the contents of a text field as a
message when an HTML button is clicked.

Save the HTML script shown in Listing 9-9 as ws_client.html.

Listing 9-9. ws_client.html

<body>
<h1>WebSocket Client</h1>
<input type="text" id="messageInput" placeholder="Type your
message here">
<button id="sendMessage">Send Message</button>
<div id="messages"></div>

342

CHAPTER9 WEBSOCKETS WITH DJANGO

<script>
const ws = new WebSocket('ws://localhost:8765");

// Log when the connection is open
ws.onopen = () => {
console.log('Connected to WebSocket server');

b

// Log messages from the server

ws.onmessage = (event) => {
const messageDiv = document.getElementById
('messages');
const newMessage = document.createElement('p');
newMessage.textContent = “${event.data}";

messageDiv.appendChild(newMessage);
};

// Send a message when the button is clicked
document.getElementById('sendMessage').
addeventListener('click', () => {
const messageInput = document.getElementById
('messageInput');
const message = messageInput.value.trim();
// Get the input value

if (message) {
if (ws.readyState === WebSocket.OPEN) {
console.log(Sending: ${message});
ws.send(message); // Send the message to
the server
messageInput.value = ''; // Clear the
input field

343

CHAPTER9 WEBSOCKETS WITH DJANGO

} else {
console.log('WebSocket is not open.');
}
} else {

console.log('Please enter a message before
sending.');
}
1);

</script>
</body>

When opened in the browser (Figure 9-2 shows the screenshot), the
connection is established, and you can start sending and receiving messages.

g fﬂ @ WebSocket Client with Input X - 5 O X

@] ® 127.0.0.1:5500/ws_client.htm|

]

- WebSocket Client
| Thanks [Send Message |

Server says: Hello Client

Figure 9-2. WebSocket client

Django Channels

To integrate the WebSocket server with a Django application, it is
recommended that you use the Channels app. Channels is a reusable
Django app that adds an asynchronous layer to your Django application so

344

CHAPTER9 WEBSOCKETS WITH DJANGO

that it can implement the WebSocket protocol. By default, Django follows
arequest-response model. Including the Channels app extends Django
for long-lived communications facilitating real-time applications like live
notifications or chats.

To install the Channels app in your Python and Django environment,
use the PIP utility. You can install Daphne as well if you haven’t done so

earlier.
pip install -U 'channels[daphne]’

Once installed, add Channels and Daphne to the list of installed apps
in the project’s settings. To avoid any conflicts, add them to the top of the
installed apps list. Assuming that you already have a Django project in
place and an app chatApp in it, update the settings.py file as

INSTALLED APPS = [
"daphne’,
'channels"’,

)

"chatApp',

As you know, Django is bundled with a WSGI-compliant development
server. However, here you want to use Daphne to server your app
asynchronously. When a project is set up (with the startproject
command), Django creates a wsgi.py script (Listing 9-10), which provides
the application object.

Listing 9-10. wsgi.py

import os

from django.core.wsgi import get wsgi application
os.environ.setdefault('DIJANGO SETTINGS MODULE',
"channelproject.settings")

application = get wsgi application()

345

CHAPTER9 WEBSOCKETS WITH DJANGO

To force Django to use the ASGI application, you need to integrate
Channels and Daphne with the Django project by creating the routing
configuration. It is similar to a Django URLCONF that tells Channels what
code to run when an HTTP request is received by a channel server.

Modify your project’s asgi.py file as in Listing 9-11.

Listing 9-11. asgi.py

import os
from django.core.asgi import get asgi application
from channels.routing import ProtocolTypeRouter
os.environ.setdefault('DJANGO _SETTINGS MODULE',
"channelproject.settings")
application = ProtocolTypeRouter ({

"http': get asgi application()
1)

ProtocolTypeRouter acts as the entry point for ASGI applications.
It routes incoming connections to appropriate handlers based on the
protocol type. For now, the http protocol is included. Later on, we shall
add the WebSocket protocol.

To let your Django project know, add ASGI_APPLICATION variable
in the settings and set it to the application object provided by the asgi.
py module.

ASGI_APPLICATION = 'channelproject.asgi.application’

If you start the server with the runserver command, you should
now find that channel’s development server has taken over our Django
development server.

python manage.py migrate
December 29, 2024 - 20:03:05
Django version 5.0.7, using settings 'channelproject.settings'’

346

CHAPTER9 WEBSOCKETS WITH DJANGO

Starting ASGI/Daphne version 4.1.2 development server at
http://127.0.0.1:8000/
Quit the server with CTRL-BREAK.

To serve a WebSocket connection, you need to incorporate a few new
features in your Django project. You know that in a synchronous Django
app, any HTTP request is mapped to the corresponding view. However, in
the case of a WebSocket connection, Django looks for consumers rather
than views. The Channels app also needs routing rules to be defined for
individual protocol types. Channel layers is another useful feature of
Django Channels that allows you to broadcast messages to all consumers
simultaneously.

A Django app that serves WebSocket is a combination of traditional
Django views that are mapped to the URL routes and consumers controlled
by channel routers. Figure 9-3 illustrates the Django Channels architecture.

URL Router|_| Views

Django

HTTP | Protocol

Client Type .| Consumer
ws | Router Channel
Layer
] Consumer
Channels

Figure 9-3. Channels architecture

347

CHAPTER9 WEBSOCKETS WITH DJANGO

Consumers

Consumers are the channel’s version of Django views. A consumer defines
the logic for handling events such as connection establishment, message
receipt, and connection closure.

There are two types of consumers - a synchronous consumer handles
events in a blocking manner, whereas an asynchronous consumer handles
the events using Python’s asyncio. In your project, you can declare a
subclass of either AsyncConsumer or SyncConsumer both available in the
channels.consumer module.

A consumer class includes the following methods:

o connect() method is called when a WebSocket
connection is opened.

o disconnect() method is called when the connection
is closed.

o receive() handles incoming messages.

Similar to Django’s generic views, Channels package also consists
of generic consumers that wrap common functionality for HTTP and
WebSocket handling.
WebsocketConsumer wraps the ASGI message sending and
receiving into handling that just deals with text and binary frames.
AsyncWebsocketConsumer is same, just that its methods are coroutines.
Let us provide ChatConsumer as a consumer class in the Django
project. To start with, define the connect () method, as in Listing 9-12.
It accepts the incoming connection request and sends back a JSON data to
the client to let it know that the connection has been established.

348

CHAPTER9 WEBSOCKETS WITH DJANGO

Listing 9-12. Consumer class

import json
from channels.generic.websocket import WebsocketConsumer

class ChatConsumer (WebsocketConsumer):
def connect(self):
self.accept()
self.send(text_data=json.dumps({
"type': 'chat.message’,
'message': 'Connection established!'’

1)

Routing

Routing in Channels is what URL routing is in the classical Django app.

It determines how different WebSocket connections are handled by
associating them with specific consumers. The routing classes in Channels
allow you to combine and stack your consumers to dispatch based on what
the connection is.

The channels.routing module contains utilities for routing protocols
to specific consumers. The main class provided by this module is
ProtocolTypeRouter. It allows you to define protocol-specific handling
within your ASGI application. Each protocol (e.g., http, WebSocket) can be
mapped to its respective handler.

Routing is provided by defining the websockets urlpatterns list (note
the similarity of the urlpatterns list in the case of Django views) in the
routing.py file in the app folder.

349

CHAPTER9 WEBSOCKETS WITH DJANGO

Listing 9-13. WebSocket router

from django.urls import re path
from chatApp.consumers import ChatConsumer

websocket_urlpatterns = [
re_path(r'ws/socket-server/', ChatConsumer.as asgi()),

]

Note the use of re_path() function instead of path() in the
Listing 9-13. The re_path() function allows for more complex urlpatterns
using regular expressions. The ws/chat/ URL is mapped to the ASGI
callable object returned by the as_asgi() method. It has a similar purpose
to Django’s as_view().

The AuthMiddleware in Channels supports standard Django
authentication, where the user details are stored in the session. It allows
read-only access to a user object in the scope.

For convenience, these are also provided as a combined callable called
AuthMiddlewareStack that includes all three.

The channels.auth module provides authentication and session
handling for WebSocket connections. AuthMiddlewareStack is a
convenient middleware stack as a combined callable comprising
AuthMiddleware, SessionMiddleware, and CookieMiddleware. It
adds Django’s authentication and session middleware to WebSocket
connections. It allows WebSocket consumers to access the scope["user”
attribute, enabling user authentication.

Go back to the asgi.py code and import the AuthMiddlewareStack
middleware, and update the list of protocols in the ASGI application object
(Listing 9-14).

350

CHAPTER9 WEBSOCKETS WITH DJANGO

Listing 9-14. Protocol router

import os

from django.core.asgi import get asgi application

from channels.routing import ProtocolTypeRouter, URLRouter
from channels.auth import AuthMiddlewareStack

from chatApp.routing import websocket urlpatterns

os.environ.setdefault('DJANGO SETTINGS MODULE',
"channelproject.settings’)

application = ProtocolTypeRouter ({
"http': get asgi application(),
'websocket': AuthMiddlewareStack(

URLRouter (
websocket urlpatterns

)
1

As mentioned earlier, the client first has to send an HTTP request and
subsequently establish the WebSocket connection. Hence, define a view
function (as in Listing 9-15) that serves an index template.

Listing 9-15. index view
from django.shortcuts import render

Create your views here.
def index(request):
return render(request, 'channelApp/index.html")

As always, register this view with a URL route, as Listing 9-16 shows.

351

CHAPTER9 WEBSOCKETS WITH DJANGO

Listing 9-16. urls.py (chatApp)

from django.urls import path
from . import views

urlpatterns = [
path('', views.index, name='index'),

Finally, refer the Listing 9-17 to update the URLCONF of the project.

Listing 9-17. URLCONF

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path('admin/', admin.site.urls),
path('', include('channelApp.urls')),

Put a JavaScript code inside the index template (Listing 9-18), which
sends the connection request at the URL with the ws:// protocol.

Listing 9-18. index.html as WS client

<html>
<head>
<title>Index Page</title>

<h1>Let's chat</h1>

<script>
let url = 'ws://' + window.location.host + '/
ws/chat/"';
const chatSocket = new WebSocket(url);

352

CHAPTER9 WEBSOCKETS WITH DJANGO

chatSocket.onmessage = function(e) {
const data = JSON.parse(e.data);
console.log("Data: ", data);
};
</script>
</body>
</html>

Note that the onmessage event is sending the data passed by the
consumer’s connect () method to the browser’s JavaScript console.

Start the Django server (Channels and Daphne take over the
default development server). The index page opens at the URL http://
localhost:8000/. The JavaScript console in the developer tools of your
browser reveals that the WebSocket connection has been established.
Refer to the browser screenshot in the Figure 9-4.

‘ga © @ Index Page x I - o X
L (i) localhost:3000 Y s B

i i [0 Elements Console Sources Metwork m1 @€ ! X
Let S Chat M@ topv @ Y Filter Default levels v llssue: B1 83

Data:

v {type: ‘chat.message 11'} 4

message: '
type: "chat.messag
L4 : Object

Figure 9-4.]S console

Go ahead and add a simple chat interface to the index template. As in
the Listing 9-19, add an HTML form that has a <div> element to display the
log of chat messages exchanged and a text field for entering a message.

353

CHAPTER9 WEBSOCKETS WITH DJANGO

Listing 9-19. Client interface

<body onload="myFunction()">
<p id="Log"></p>
<h1>Let Us Chat!</h1>

<form id="form">
<input type="text" name="message"/>

<p>Messages</p>

<div id="messages" style="border: thin solid black">
</div>
</form>

Channel Layers

The Django Channels app has a feature of Channel layers, which is
especially useful for making a distributed real-time application. It allows
you to talk between different instances of an application. Channel layers
allow the consumers to send and receive messages, and it makes it
possible to broadcast messages to multiple consumers in a group.

Note that if you are using any SyncConsumer, you should wrap the
Channel Layer functionality in async_to_sync adapter function.

Channel layers are configured by defining the CHANEL_LAYERS in the
project’s settings.py module. The default channel layer is obtained from a
project with channels.layers.get channel layer(), butifyou are using
consumers, then self.channel layer automatically provides a copy for
you on the consumer.

354

CHAPTER9 WEBSOCKETS WITH DJANGO

Django Channels provides two backends for Channel layers:

Redis Channel Layer: RedisChannellayer is a
Django-maintained channel that uses Redis as
its backing store. A single-server and sharded
configurations are supported. This layer is
recommended for production use.

In-Memory Channel Layer: Channels also comes
packaged with an InMemoryChannelLayer. This
should be used in testing environment or for local-
development purpose.

To configure a Django project for Redis, use the following setting:

CHANNEL_LAYERS = {
"default': {
"BACKEND': 'channels_redis.core.RedisChannellayer',
'"CONFIG': {
'hosts': [('127.0.0.1', 6379)],
})
1

The setting may be modified as below for the in-memory layer:

CHANNEL_LAYERS = {
"default':{
"BACKEND': 'channels.layers.InMemoryChannellayer"

As mentioned above, if your consumer class is derived from
AsyncConsumer, its send(), receive(), and other functions are async
coroutines, so you need to await them. However, if it is a SyncConsumer,
you will need to use the async_to_sync wrapper.

355

CHAPTER9 WEBSOCKETS WITH DJANGO

Single Channel

When the channel layer is enabled, an open WebSocket in your application
has a single Consumer instance, and it has a unique channel name: self.
channel name.

Listing 9-20. Single channel

from asgiref.sync import async_to_sync
from .models import Clients
class ChatConsumer (WebsocketConsumer):
def connect(self):
Make a database row with our channel name
Clients.objects.create(channel name=self.channel name)

To send to a single channel, just find its channel name (Listing 9-21)
and use channel_layer.send.

Listing 9-21. Sending message to a channel
from channels.layers import get channel layer

channel layer = get channel layer()
async_to_sync (channel layer.send("channel name", {

"type": "chat.message",
"text": "Hello there!",
1)
Groups

Instead of sending the messages to individual channels, you'll ideally
want to broadcast them to multiple consumers simultaneously. For this
purpose, Channels provides the Groups. Groups is a broadcast system that
allows you to add and remove channel names from named groups and
send messages to those named groups.

356

CHAPTER9 WEBSOCKETS WITH DJANGO

The group_add() method is used to add a channel (or a consumer) to a
given group. In Listing 9-22, it is called from inside the connect () method
of the consumer.

Listing 9-22. Channel group

def connect(self):
self.room _group name = 'test’

async_to_sync(self.channel layer.group add)(
self.room group name,
self.channel name

)
self.accept()

If a user disconnects, it is removed from the group with the group
discard() method.

def disconnect(self, close code):
async_to_sync(self.channel layer.group discard)(self.
room_group name, self.channel name)

Whenever a new message is received in a consumer, it will call the
method group _send() method of the channel layer to which it belongs,
which will send the data, automatically to all the active members of the
group (refer to Listing 9-23).

Listing 9-23. Sending to group

def receive(self, text data):
text_data_json = json.loads(text data)
message = text data_json['message’]

async_to_sync(self.channel layer.group send)(
self.room _group name,

357

CHAPTER9 WEBSOCKETS WITH DJANGO

{
"type':'chat_message’,
'message' :message

)

Here, the value of the type attribute is chat_message method. It is the
method that internally calls the send() method to send data to each consumer.

Listing 9-24. Broadcast message

def chat_message(self, event):
message = event['message’]

self.send(text_data=json.dumps({
"type':'chat’,
'message' :message

1)

WebSocket Client Template

You have used a web page as the WebSocket client to interact with a stand-
alone WebSocket server built with the websockets library. Its JavaScript
code needs to modified to make it suitable for Django Channels and
especially for Channel layers.

As described earlier, a simple HTML form is added to enter the
messages and to display the chat log. In the JavaScript code (Listing 9-25),
add a function that pops up a prompt box to let the user enter a name.

Listing 9-25. WebSocket client - updated

<script type="text/javascript">

var user="";
function myFunction() {

358

CHAPTER9 WEBSOCKETS WITH DJANGO

user = prompt("Enter User name", "Useri");
document.getElementById("Log").innerHTML =
"<h2>Hello " + user +"</h2>";

The onmessage event handler, as in Listing 9-26 is fired when an
incoming message is notified. If it is from the group, the message text is
appended to the chat log (a div element with messages as the id).

Listing 9-26. Chat log

chatSocket.onmessage = function(e){
let data = JSON.parse(e.data)
console.log('Data:', data)

if(data.type === 'chat'){
let messages = document.getElementById
("messages")

messages.insertAdjacentHTML('beforeend', "<div>
<p>${data.message}</p>
</div>")

On the other hand, the message entered by a user is pushed
into the group so that it can be broadcast to all the consumers.
The Listing 9-27 has the relevant JavaScript code.

Listing 9-27. Sending in group

let form = document.getElementById('form")
form.addEventListener('submit', (e)=> {
e.preventDefault()
let message = e.target.message.value

359

CHAPTER9 WEBSOCKETS WITH DJANGO

chatSocket.send(JSON. stringify({
'message' :user+":"+message
D)

form.reset()

1)

To test the WebSocket group chat, fire up the Daphne server as before,
and open two browser windows as in Figure 9-5, pointing to the URL of the
index page (http://localhost:8000/).

Try sending text from either window. The messages will appear in the
chatlog on both the browsers.

1 4 [@@ chat x [= o x 2 @ @ chat x -+ = =] x
<« O T} Jocalhost:B00 = = = & 1) localhost 80 O C |
-

Hello Userl Hello User2

Let Us Chat! Let Us Chat!
Messuges Messages

Userl:Hello User2 | [Userl:Hello User2

Jser]:How are you? | [Userl:How are you?

User2:1 am fine, thank you, Jser2:] am fine, thank you,

v

Figure 9-5. Channels group chat

Login/Logout

The channels.auth module includes login and logout functions, similar
to the login and logout functions in the contrib.auth package in Django.
Within your consumer, use login() to log a user in:

login(scope, user, backend=None)

360

CHAPTER9 WEBSOCKETS WITH DJANGO

This requires that your scope has a session object; it can be
done by wrapping the consumer in a AuthMiddlewareStack.
The Listing 9-28 shows how this logic works.

Listing 9-28. Channels login (async)
from channels.auth import login

class ChatConsumer (AsyncWebsocketConsumer):
async def receive(self, text data):

await login(self.scope, user)
await database sync _to async(self.scope
"session"].save)()

Note that the session is populated but will not be saved automatically
- you must call the scope["session"].save() method.

When calling from a synchronous consumer, you will need to use the
async_to_sync wrapper, similar to Listing 9-29.

Listing 9-29. Channels login (sync)

from asgiref.sync import async_to sync
from channels.auth import login

class SyncChatConsumer (WebsocketConsumer):
def receive(self, text data):

async_to_sync(login)(self.scope, user)
self.scope["session"].save()

361

CHAPTER9 WEBSOCKETS WITH DJANGO
You can log out a user with
async logout(self.scope)
or

async_to_sync(logout)(self.scope)

Summary

This chapter serves as a good introduction to Django Channels, with
which you can add real-time capabilities to your Django application. You
learned how to implement the WebSocket protocol to broadcast messages
in a group. The Channels app provides additional features such as
authentication, using Redis Channel Layer, and integrating IoT protocols
like MQTT. However, discussion of these features is not within the scope of
this book. Hence, you can experiment with them by referring to the official
documentation and other resources.

The next chapter is a walkthrough for building a React frontend for
your Django REST API app.

362

CHAPTER 10

ReactJS with Django

In the preceding chapters, you learned how to serve different protocols,

i.e., REST, GraphQL, and WebSocket, with Django apps and consume the

responses in the Django templates. This chapter focuses on developing a

client application using React]S, a popular JavaScript-based framework.
These are the important topics that will be covered in this chapter:

React]S

React app

React Developer Tools
What is Promise?
useState hook
useEffect hook

Axios

DRF backend

Axios frontend

Apollo
Graphene-Django backend
Apollo frontend

React for WebSocket

© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_10

363

https://doi.org/10.1007/979-8-8688-1472-3_10#DOI

CHAPTER 10 REACTJS WITH DJANGO

ReactJS

As you have learned in the very first chapter, Django follows the MVT
architecture, with the Template component taking care of the presentation
layer of a web application. A template is a web page interspersed with DTL
(Django Template Language) constructs to render dynamic content in
response to the user’s interaction.

However, the use of templates as a frontend of the applications has
certain limitations. First of all, templates are rendered on the server and
sent to the browser as static HTML. Hence, any changes in the Ul require
a full-page reload, which results in a considerably lower performance.

The use of templates is suitable for simpler applications with minimal
interactivity.

On the other hand, applications based on JavaScript-based frameworks
provide client-side rendering; the DOM is updated dynamically without
refreshing the page. React is one of the most popular JavaScript libraries
for frontend development because it provides numerous advantages that
make building user interfaces (UIs) efficient, scalable, and developer-
friendly.

One of its advantages is the separation of concerns, with Django
managing the backend logic while React is responsible for the UI. On one
hand, Django’s powerful ORM is ideal for handling large amounts of data
and traffic. On the other, React with its virtual DOM feature leads to a
smooth user experience.

React library was first used by Facebook in 2011. Since then, it is being
maintained by Meta as a free and open source frontend JavaScript library,
with version 18.3 being the latest.

While a detailed discussion of the React API is out of the scope of this
book, a brief overview of its important features is taken here to give the
interaction between React and Django a proper perspective.

364

CHAPTER 10 REACTJS WITH DJANGO

Virtual DOM: While displaying a web page, the browser interprets
the HTML code and builds the Document Object Model (DOM) as a tree
of HTML components and renders it. In order to minimize the reloading
action, React]S uses a virtual DOM, which is a lightweight, in-memory
representation of the actual Document Object Model (DOM). When the
state of any component is updated, React creates a new Virtual DOM
tree and compares it with the real DOM to identify and apply only the
differences, thus giving an improved performance in the case of dynamic
updates to the UL.

Components: Component is a basic building block of the React code.
One or more reusable components are added in hierarchical manner
to construct a single root component, which is then added to the root
element of the DOM. Components interact with each other through props
(properties), much like the arguments or parameters in a programming
language such as Python. You can declare a component as a function
component or a class component.

Hooks: A hook is a JavaScript function that facilitates access to the
features such as state and other lifecycle properties. The hook feature was
introduced in React 16.8; therefore, you don’t necessarily use the class
components. Different types of hooks are available.

State hooks let a component “remember” information, for example,
useState.

Context hooks let a component receive information from others, for
example, useContext.

Effect hooks let a component connect to and synchronize with external
systems, for example, useEffect.

365

CHAPTER 10 REACTJS WITH DJANGO

React App

A React application code basically consists of HTML, JavaScript, and

CSS. The two libraries needed - React and ReactDOM - can even be
included in the code via CDN. However, the recommended approach is

to use React build tools with the npm utility that is shipped with Node.js.
The create-react-app build tool is based on webpack and has been quite
popularly used. Nowadays, a new build tool - Vite - is the preferred build
tool for the latest versions of React, owing to its speed and efficiency.

To use Vite, you'll need to ensure that you have Node.js and npm
installed on your system (if not already, install the latest versions from the
Node.js official website: https://nodejs.org/en).

To create a new React app, use the following command:

npm create vite@latest my-app

You may be prompted to choose a framework (choose React) and a
variant (choose JavaScript). This command initializes a new Vite project
with a React template. It will install the react and react-dom libraries.

Change to the project folder:

cd my-app
To install the necessary dependencies for your React project, run the
following command:

npm install

It will install the react and react-dom libraries. This can be verified
from the dependencies section in the package. json file inside the my-
app folder.

"dependencies": {
"react": ""18.3.1",
"react-dom": "~18.3.1"

366

https://nodejs.org/en

CHAPTER 10 REACTJS WITH DJANGO
Now, start the Vite development server with the following command:

npm run dev

> my-app@0.0.0 dev

> vite
VITE v6.0.7 ready in 430 ms
- Llocal: http://localhost:5173/
= Network: use --host to expose
= press h + enter to show help

By default, the server listens at http://localhost:5173. You can set
alternative port number in the vite.config. js file. Visit the URL and you
should get the default home page in the browser (as in Figure 10-1), if the
installation steps are correctly executed.

W Vite + React x =+ = =] X

2 @
= & () localhost:5172 g =B

Vite + React

Figure 10-1. Home page of React app

The project’s root folder includes, along with the required node modules,
index.html. This file (Listing 10-1) is the entry point of your application,
where your React application is mounted. It is present in the root directory.

367

CHAPTER 10 REACTJS WITH DJANGO

Listing 10-1. index.html

<body>

<div id="root"></div>

<script type="module" src="/src/main.jsx"></script>
</body>

The project folder has the following important files inside its src folder:

App.jsx: The root component of your application

is defined here, having a default UI designed. The
App component displays the logos of React and Vite,
each linked to the respective home pages. You will
modify this code to add more components as per
the needs of your project.

main.jsx: This file (Listing 10-2) imports the App
component and attaches it to the root element in
the index.html file.

Listing 10-2. main.jsx

import { StrictMode } from 'react’

import { createRoot } from 'react-dom/client’
import './index.css'

import App from './App.jsx’

createRoot(document.getElementById('root')).render(
<StrictMode>
<App />
</StrictMode>,

)

368

CHAPTER 10 REACTJS WITH DJANGO

The createRoot () function lets you create a root to display React
components inside a browser DOM node. The use of StrictMode is
optional; it helps you find common bugs in your components.

Go ahead and edit the App.jsx file in your preferred IDE (such as VS
Code) and modify the App component (as in Listing 10-3) to render the
message React Frontend for Django API.

Listing 10-3. App.jsx

import './App.css'

function App() {
return (

<h1>Django + React</h1>

<div className="App">
React Frontend for Django API
</div>

)5
}

export default App

You must have noted that the files containing a React code have the
.jsx extension instead of .js, as a normal JavaScript file has. The JSX stands
for JavaScript XML. The .jsx file holds the React component design and
its logic and state. It allows you to write HTML-like and declarative code
within JavaScript. However, a React project may also have the normal .js
files. The convention says that jsx files contain the component-related
code and the JS files the non-UI code.

Note that the src folder also includes App.css, to define the styles to be
applied to different HTML elements.

369

CHAPTER 10 REACTJS WITH DJANGO

React Developer Tools

Most popular browsers (Chrome, Edge, etc.) have built-in Developer
tools with which you can debug HTML, CSS, and JavaScript code in

your web page. To inspect and debug the React code, you need to add
the React-specific development tools as the extensions available in the
respective stores. If the current page uses React, the Components and
Profile panels are visible. Figure 10-2 shows the React Developer Tools at

the bottom of the browser window.

W/ Vite + React x | + = (m] X

2 ®
= & () localhost:517: o, T |

(Y] u'_]] @ [45 @ ﬁ('_umponentb‘«‘ E ,éO:— = {‘3 + o (_‘) X

[w Search (tex! App Profiler & ® 85 O

App A
L ¥ Brops
4 S b praps o =

Console lssues Search o

Figure 10-2. React Developer Tools

Whether you're a beginner or an experienced developer, a
comprehensive set of features in the React Developer Tools help you to
inspect the component hierarchy and optimize your applications. While it
is not possible here to explore these tools in detail, one is well advised to
look for other resources to master the React Developer Tools.

What Is Promise?

In JavaScript (and React), promises are a fundamental tool for handling
asynchronous operations. A Promise is a special JavaScript object that
returns a value after an asynchronous operation is successfully completed,

or fails to complete successfully.

370

CHAPTER 10 REACTJS WITH DJANGO

In life, you either fulfill a promise or you fail to keep it. The promise
object in JavaScript has three possible states. It is in pending state when an
executor function starts. It is said to be resolved when the operation succeeds,
and rejected when it fails. Any which way, the object reaches a settled state.
The Figure 10-3 illustrates how Promise works.

Resolved
then()

Promise

(Pending) Settled

Rejected
.catch()

Figure 10-3. How Promise works

To create a Promise object, you need two parameters: resolve and reject.

const myPromise = new Promise((resolve, reject) => {
// condition

};

If the condition is met, the Promise will be resolved; otherwise, it will
be rejected. JavaScript uses then() for resolved Promises and catch() for
rejected Promises.

myPromise.then((message) => {
console.log(message);

}).catch((message) => {
console.log(message);

};

In React, promises are often used to send and retrieve data from a
server. They are combined with hooks like useEffect and useState to
manage and render async data.

371

CHAPTER 10 REACTJS WITH DJANGO

useState Hook

While you can declare regular JavaScript variables inside a React
component, values of such local variables are not retained on every render
of the component. React has the provision of the state variable.

The state variable stores the value of a React component, which can
change as a result of user interaction. Change in the state variable triggers
the component to be re-rendered so that React components can return
active data updates and provide an ideal user experience.

Use the useState hook to add a state variable to the component.
Import it from the react module.

import { useState } from 'react’

It returns an array with two elements: the current state value and a
function to update that state value.

const [count, setCount] = useState(0)

The current value of count is 0, and the setCount () function causes it
to be changed. Let us call this function on the onClick event of a button, as
in the Listing 10-4. Every button click increments the count, and the App
component is re-rendered showing the incremental count.

Listing 10-4. useState hook

function App() {
const [count, setCount] = useState(0)

return (

<h1>Hello World</h1>
<div className="card">
<button onClick={() => setCount((count) => count + 1)}>

372

CHAPTER 10 REACTJS WITH DJANGO

count is {count}
</button>

</div>

)
}

export default App

useEffect Hook

The useEffect hook causes a function to be invoked every time a
component is rendered. Note that a component renders every time its
associated state changes.

The useEffect hook needs two arguments: a callback function to be
invoked and a dependency array.

useEffect (EffectCallback, deps)

The callback function is mandatory. If the deps array is provided, the
function will be called only when the value in the array changes.

In this example, in Listing 10-5, the useEffect hook displays a message
in the console every time the count state changes.

Listing 10-5. useEffect hook

import { useState, useEffect } from 'react’
import './App.css'

function App() {
const [count, setCount] = useState(0)

373

CHAPTER 10 REACTJS WITH DJANGO

useEffect(() => {
console.log('count changed:', count)

}
, [count])
return (
<h1>Hello World</h1>
<div className="card">
<button onClick={() => setCount((count) => count + 1)}>
count is {count}
</button>
</div>
)

}
export default App

However, if the deps array is empty (pass [] as the second argument to
useEffect), the button click will increment the count, but the useEffect
function will not be called. This can be verified by the console log that
doesn’t show the subsequent change in the count.

Axios

The primary objective of this chapter is to build a React app that acts

as a client for the Django APIs. Basically, you need a tool to issue HTTP
requests from within the React code. The two popular libraries used for
this purpose are Fetch and Axios. Fetch is a native JavaScript library
(hence, it doesn’t need any installation) for handling operations such as
GET/POST, whereas Axios is a third-party library (it needs to be installed

374

CHAPTER 10 REACTJS WITH DJANGO

with npm). Axios is found to be more convenient because of its simpler
AP], although Fetch also presents some significant advantages. We shall,
however, implement Axios library in this chapter.

Axios is a Promise-based HTTP client for the browser and Node.js.
(By the way, Fetch also supports Promise API.) It uses the native Node.
js http module on the server-side, while on the client (browser), it
uses XMLHttpRequests. This small yet simple-to-use library has a very
extensible interface.

Install Axios in your React project by running the following command:
npm install axios
Your package.json should show the updated dependencies section as

"dependencies": {
"axios": ""1.7.9",
"react": "*18.3.1",
"react-dom": "~18.3.1"

To send HTTP requests using Axios, you first need an instance of axios
class (Listing 10-6), returned by the create() method.

Listing 10-6. Axios object
import axios from 'axios';

const API = axios.create({
baseURL: "https://example.com/api/'
D;

Certain additional parameters such as timeout, headers, etc., may also
be passed. The axios object has all the required methods to place GET,
POST, PUT, and DELETE calls.

375

CHAPTER 10 REACTJS WITH DJANGO

axios.get(url[, config])
axios.post(url[, data[, config]])
axios.put(url[, data[, config]])
axios.delete(url[, config])

As you can see, the post() and put() methods need to have a data
parameter for creating a new resource and updating an existing one. The
config parameter is optional.

The axios module also defines these convenience functions
corresponding to the instance methods.

axios.get(url[, config])
axios.post(url[, data[, config]])
axios.put(url[, data[, config]])
axios.delete(url[, config])

Let us experiment a little with one of the many free API services
available on the Internet for testing purpose. One such service is https://
restful-api.dev/; many publicly accessible endpoints of a REST API are
listed. One of them is https://api.restful-api.dev/objects/7, which
returns the details of a single object with the specified id.

{

"id": "7",
"name": "Apple MacBook Pro 16",
"data": {

"year": 2019,

"price": 1849.99,
"CPU model": "Intel Core i9",
"Hard disk size": "1 TB"

376

https://restful-api.dev/
https://restful-api.dev/
https://api.restful-api.dev/objects/7

CHAPTER 10 REACTJS WITH DJANGO

Let us use this endpoint as an argument to the axios.get() function.
Create a new jsx file in your React project (Listing 10-7).

Listing 10-7. GET request with Axios

import React, { useEffect } from 'react’
import axios from 'axios'

function Api() {
useEffect (() => {
axios.get("https://api.restful-api.dev/objects/7")
.then((Response) => {
console.log(Response)
1)
b0

return (
<div>
GET API with Axios
</div>
)
}

export default Api

You also need to modify the App.jsx file and render the Api component
in the App component, which is rendered as the root.

While this component simply renders a div element with a text (GET
API with Axios), the response returned by the GET endpoint is displayed
on the console. Open the Developer tools of your browser (shown in
Figure 10-4) after running the project; click on the Console tab to check
the data.

377

CHAPTER 10 REACTJS WITH DJANGO

! : @ W Diango + React X + = =} X

| & i () localhost:5173 g !

WP 0 R » Booe @R 02 2 © 0 + w @ X

| 3] @ top w) = -urkhttpy//loc @ ® 16 iden EE}
v = 6 messages X
a diant 3 not available
D Apijsx 2 v data: a
w data:
D 26t 2 CPU model: “"Intel Core ig" .
» @ 4 user mes... Hard disk size: "1 TB"
(\’:\) No errors price: 1849.99
- year: 2819
/1% No warnings » rototype]]: object
> (_i:} 4 infa id: "7
T L name: "Apple MacBook Pro 16" b
sale |ssues Search + g B3

Figure 10-4. Developer console

The response object typically contains the following attributes:
data: The actual data returned by the API
status: The HTTP status code
headers: The response headers
config: The Axios request configuration

The Component tag in your browser’s Developer tools shows

(Figure 10-5) the Api component inside the App component and the
useEffect() hook.

378

CHAPTER 10 REACTJS WITH DJANGO

W Diango + React X + = X

(=]
(D localhost:5173 s E]
a

o2 O @ (f) @ ECnmponnn[sﬁ n ﬂ = {:5} + 4. @ X

e ®@
< @

[w Search (tex Api ® B o
v ApF props "
Api new sntry: ™
hooks Z 0
1 Effect: () => {}
rendered by

createRoot ()
react-dom@l8.3.1

source a
4 I » Api.jsx?t=1736151806544:22 v
Console Issues Search —+ & M

Figure 10-5. Developer component tab

The response retrieved from the API can also be rendered in a React
component. Let’s use another free API to display a list of users from the
endpoint https://reqres.in/api/users?page=2.

This time, you will use useState along with the useEffect hook. The
axios object returns a JSON response of the users, with the user object
having attributes such as first_name, last_name, email, etc. The setData()
function of the useEffect hook stores it in the userData array, which is in
turn rendered in the component with the help of the map() function. Note
that the map function in JavaScript is similar to the for loop in Python. The
code snippet in Listing 10-8 obtains the response using the Axios library.

379

https://reqres.in/api/users?page=2

CHAPTER 10 REACTJS WITH DJANGO

Listing 10-8. Getresponse with Axios

import React, { useEffect, useState } from 'react’
import axios from 'axios'

function Api() {
const [userData, setData] = useState([]);
useEffect (() => {
axios.get("https://reqres.in/api/users?page=2")
.then((Response) => {
console.log(Response)
setData(Response.data)
1)
b [

return (
<div>
<h2>GET API with Axios</h2>
{userData.data?.map((item, index) => {
return (
<div key={index} style={{border: "1px solid", margin:
"10px", padding: "10px"}}>
<p>Name: {item.last name}, {item.first name}
Email: {item.email}</p>
</div>
)
H}
</div>
)
}

export default Api

380

CHAPTER 10 REACTJS WITH DJANGO

Fire the Vite server and visit the URL http://localhost:5173 to display
the list of users returned by the REQRES API. The Figure 10-6 shows the
output in the browser window.

! : @ W Diango + React X + = =} X
| < @ (i) localhost:5173 7 '

Django + React

GET API with Axios

Name: Lawson, Michael Email: michael.lawson@reqres.in

Name: Ferguson, Lindsay Email: lindsay.ferguson@reqres.in

Figure 10-6. Axios GET response

Your React app is almost ready to be used as the frontend. You only
have to replace the REQRES endpoint with that of a backend API built with
Django REST Framework.

DRF Backend

In one of the earlier chapters, you learned how to build a Django API

with serializers and generic views in Django REST Framework. The only
difference here is that instead of the Django templates, the frontend would
be a React app. This requires a significant modification in the project’s
settings.

381

CHAPTER 10 REACTJS WITH DJANGO

Cross-Origin Resource Sharing (CORS)

By default, the Django server runs at http://localhost:8000, while the
default URL of your React app is http://localhost:5173. To allow the Django
server to respond to any requests outside its domain, you need to use

the cross-origin resource sharing feature. If not, the server throws the An
unauthorized status (403) error.

Servers usually have a same-origin policy. The CORS mechanism
enables it to be bypassed. For that to happen, you need to tell the server
which domains to allow access to its resources.

In the Django ecosystem, the django-cors-headers package allows in-
browser requests to your Django application from other origins.

Naturally, you need to install it in the current Python environment
with PIP:

pip install django-cors-headers

To enable CORS support in the Django project, add 'corsheaders'
in INSTALLED_APPS along with 'rest framework' and 'corsheaders.
middleware.CorsMiddleware' in the MIDDLEWARE list of its settings.
py file.

The CORS_ALLOWED_ORIGINS parameter is a sort of a white list of
domains allowed to send requests to the Django server. Add the URL of the
Vite server in this list.

CORS_ALLOWED ORIGINS = [
"http://localhost:5173",

That’s it. Your Django project is now capable of acting as a backend to
the React app. The rest of the steps are similar to those done by you in the
previous chapter (Chapter 7). Here is a quick run-through of the steps:

382

CHAPTER 10 REACTJS WITH DJANGO

Model: We shall use the Ticket model (Listing 10-9)
that was used earlier in the book.

Listing 10-9. Ticket model

class Ticket(models.Model):
flight number = models.CharField(max_ length=10)
passenger name = models.CharField(max_length=100)
departure time = models.DateTimeField()
seat_number = models.CharField(max_length=5)

Serializer: Write a ModelSerializer class based on the
above model. Refer to the Listing 10-10.

Listing 10-10. TicketSerializer

class TicketSerializer(serializers.ModelSerializer):

class Meta:
model = Ticket
fields = " all "

Views: Define the generic views in views.py

(Listing 10-11) - TicketListCreateView for handling GET
and POST requests and TicketRetrieveUpdateDeleteView
for handling GET, PUT, and DELETE requests.

Listing 10-11. Views

class TicketlListCreateView(generics.ListCreateAPIView):
queryset = Ticket.objects.all()
serializer class = TicketSerializer
class TicketRetrieveUpdateDeleteView(generics.
RetrieveUpdateDestroyAPIView):

383

CHAPTER 10 REACTJS WITH DJANGO

queryset = Ticket.objects.all()
serializer class = TicketSerializer

A view function acting as an API root is
always useful.

@api_view(['GET'])
def api root(request, format=None):
return Response({
"tickets': reverse('ticket-list',
request=request, format=format),
"ticket-detail': reverse('ticket-detail’,
args=[1], request=request, format=format),

1)

e Map these views to suitable URL routes in the urls.py
file, as in Listing 10-12.

Listing 10-12. URL routes

urlpatterns = [
path('', views.api root, name='api-root'),
path('tickets/', views.TicketListCreateView.as_
view(), name="ticket-list'),
path('tickets/<int:pk>/", views.TicketRetrieve
UpdateDeleteView.as view(), name="ticket-
detail'),

]

Lastly, update the URLCONF of the project. Run the
development server and test the functionality with DRF’s browsable
API. The expected output is shown in Figure 10-7.

384

CHAPTER 10 REACTJS WITH DJANGO

@ @ Api Root - Django REST framew: X -+ - o X

() localhost:8000/api/ vr se»

API roat to list all available endpoints.

GET /api

HTTP 2@@ OK

Allow: OPTIONS, GET
Content-Type: application/json
Vary: Accept

Api Root ‘

"tickets": "http://localhost:&eed/api/tickets/™
"ticket-detail™: "http://localhost:80ee/api/tickets/1/"

Figure 10-7. Apiroot of Django REST app

Axios Frontend

Create a new React project with the Vite build tool. Add the Api.jsx file in the
src folder (Listing 10-13) to declare an object of axios class. This time use the
URL of your Django API as the baseURL (follow the steps explained earlier).

Listing 10-13. Api.jsx
import axios from 'axios';

const API = axios.create({
baseURL: 'http://127.0.0.1:8000/api/",
D;

export default API;

385

CHAPTER 10 REACTJS WITH DJANGO

Next, create a new file to define the TicketList component. It employs
the useEffect and useState hooks to fetch all the tickets in the backend
database and render the list in the App component. You will also be
creating another component to display a form for the user to fill and use
the data to send a POST request.

At this juncture, your root component should provide two things: one,
a navigation bar to let the user select actions such as view the list, book a
new ticket, and update or delete a ticket, and two, a routing mechanism
(similar to URLCONTF in Django) to map the URLS to the respective
components.

First about the routing. The 'react-router-dom' is a declarative
routing library that helps in matching the URL to components, thus
providing navigation around the app.

First, you need to install this library with npm package manager.

npm install react-router-dom

BrowserRouter is an important component in this library. It
uses the browser’s built-in HTML5 history API to manage navigation
between different pages or components in your React application and
ensures the app’s URL is updated in the browser as the user navigates.
The typical usage of BrowserRouter is shown in Listing 10-14.

Listing 10-14. Routing in React
import { BrowserRouter as Router } from 'react-router-dom';

const App = () => (
<Router>
{/* Routes and components go here */}
</Router>
)5
export default App;

386

CHAPTER 10 REACTJS WITH DJANGO

Multiple Route components are included inside the <Routes> .. </
Routes> construct. Each Route component is used to define a mapping
between a specific URL path and the component.

Assuming that the TicketList component is mapped with the /
list endpoint and the AddTicket component to the /add endpoint, the
routing mechanism of your root App component would be as shown in
Listing 10-15.

Listing 10-15. Routing in App.jsx

import { BrowserRouter as Router, Route, Routes, Link } from
'react-router-dom’;

import TicketList from './TicketlList';

import AddTicket from './AddTicket';

import Home from './Home';

<Router>
<div>
<Routes>
<Route path="/" element={<Home />} />
<Route path="/list" element=
{<TicketList />} />
<Route path="/add" element=
{<AddTicket />} />
</Routes>
</div>
</Router>

Additionally, providing a neat navigation bar will give an enhanced
user experience. In React, the <Link> component is used to define
hyperlinks (Listing 10-16). For example, <Link to="/">Home</Link>
navigates to the root route (/).

Include the navigation code inside the Router component.

387

CHAPTER 10 REACTJS WITH DJANGO
Listing 10-16. Navigation in App.jsx

<nav className="navbar">
<ul className="navbar-list">
<1li className="navbar-item">
<Link to="/">Home</Link>
</1i>
<1li className="navbar-item">
<Link to="/list">List</Link>
</1i>
<1li className="navbar-item">
<Link to="/add">New</Link>
</1i>
<1li className="navbar-item">
<Link to="/update">Update</Link>
</1i>
<1li className="navbar-item">
<Link to="/delete">Delete</Link>
</1i>

</nav>

TicketList Component

Let us now turn to the TicketList component. It employs the useState
hook to fetch the list of tickets in a userData state variable. When the
TicketList component is first rendered, the Api.get() method retrieves
the data. The state change causes the list to be rendered. As before the
map() function is used to iterate through the list. The code for ticketList.jsx
component is as per the Listing 10-17.

388

CHAPTER 10 REACTJS WITH DJANGO

Listing 10-17. ticketList.jsx

function TicketlList() {
const [userData, setData] = useState([]);

useEffect(() => {
API.get("tickets/")

.then((response) => {

console.log(response.data); // Check the structure of
the data

setData(response.data);

1)

.catch((error) => {
console.error("Error fetching data:", error);

B
LoD

return (
<div>
<h2>Ticket List</h2>
{userData.map((item, index) => (
<div key={index} style={{border: "ipx solid", margin:
"10px", padding: "10px"}}>
<p>Name: {item.passenger name} Flight
No: {item.flight number}
Seat No: {item.seat number}</p>
</div>
)}
</div>
);
}

389

CHAPTER 10 REACTJS WITH DJANGO

When visited, the TicketList component renders the list (Figure 10-8).

2 @ WV Diango + React x —+ - o X
&« = G (i) localhost:5173/list g

Home List New Update Delete

Ticket List

Name: John Doe Flight No: Al101Seat No: 12A

Name: Jane Smith Flight No: EK103Seat No: 22C

Name: Alex Wall Flight No: QF9Seat No: 10B

Name: Alan wood Flight No: AA101Seat No: 23B

Figure 10-8. TicketList component of React frontend

AddTicket Component

This component is expected to render an HTML form for the user to fill the
passenger data. We shall use the built-in browser <form> component that
creates interactive controls for submitting information. For example:

<form action={search}>

<input name="query" />

<button type="submit">Search</button>
</form>

390

CHAPTER 10 REACTJS WITH DJANGO

The <input> component lets you render different kinds of form inputs.
You basically input component of text type to receive values for the model
attributes such as name, flight number, etc. One such input element is
shown in Listing 10-18.

Listing 10-18. Input element in React

<form onSubmit={handleSubmit}>

<div>
<label>Flight Number:</label>
<input
type="text"
name="flight number"
value={ticket.flight number}
onChange={handleChange}
required
/>
</div>

The form submission is handled by the handleSubmit () function.
Internally it raises the POST request to the tickets/ URL with the form data
to be used for creating a new Ticket resource. The useState hook records
the state of all the input elements. If the server responds with a success
message, the form is again reset. Listing 10-19 shows the abbreviated code
for the AddTicket component.

Listing 10-19. AddTicket component

const AddTicket = () => {
const [ticket, setTicket] = useState({

flight _number: "',

passenger _name: '',

391

CHAPTER 10 REACTJS WITH DJANGO

departure_time: "',

seat number: '',

};

const [successMessage, setSuccessMessage] = useState('');
const [errorMessage, setErrorMessage] = useState('');

// Handle form input change

const handleChange = (e) => {
const { name, value } = e.target;
setTicket({ ...ticket, [name]: value });

};

// Handle form submission

const handleSubmit = (e) => {
e.preventDefault();
setSuccessMessage('"');
setErrorMessage('');

axios.post('tickets/', ticket)
.then((response) => {
setSuccessMessage('Ticket added
successfully!");

setTicket({ flight number: '', passenger name:
"', departure time: '', seat number: '' }); //
Clear form

console.log(response.data);

1

.catch((error) => {
setErrorMessage('Failed to add ticket. Please
try again.');
console.error(error);

D;

};

392

CHAPTER 10 REACTJS WITH DJANGO

return (
<div>
<h2>Book New Ticket</h2>
<form onSubmit={handleSubmit}>
<div>
//input component for flight number
</div>
<div>
//input component for passenger name
</div>
<div>
//input component for departure time
</div>
<div>
//input component for seat number
</div>
<button type="submit">Submit</button>
</form>
{successMessage && <p style={{ color: 'green’
}}>{successMessage}</p>}
{errorMessage 8&& <p style={{ color: 'red' }}»
{errorMessage}</p>}
</div>
);
};

export default AddTicket;

The AddTicket component renders a booking form as shown in
Figure 10-9.

393

CHAPTER 10 REACTJS WITH DJANGO

[& @ W Django + React X el - =] X
«~ O (i) localhost:5173/add g S C |
Book New Ticket

Flight Number:
Passenger Name:

Departure Time:

mm/dd/yyyy --:i-- --

Seat Number:

“ v

Figure 10-9. AddTicket component

Apollo

You already know how to build a Django app that serves a GraphQL API
(Chapter 8). While you can consume the data served by the app (built
with Strawberry-Django or Graphene-Django) with a Django view and
template - for which you'll need to perform the HTTP operations using the
requests library - a better approach would be to use a client-

side application for this purpose. A frontend React app will provide an
enhanced user experience while interacting with the GraphQL server.

394

CHAPTER 10 REACTJS WITH DJANGO

Apollo is one of the popular and a comprehensive set of tools that
helps in building scalable applications with GraphQL. Apollo has a server
component (which we are not going to use here, as we already have a
GraphQL server built with Django) and the Apollo Client library that is
very easy to integrate in a React app.

Apollo Client is a JavaScript library that facilitates the state
management of local and remote data with GraphQL. With its declarative
data fetching mechanism, you can easily query and fetch the data without
having to manually track the state manually.

To let your React app interact with Django’s GraphQL server, you first
need to install the Apollo Client library. With the command terminal
logged in the React app directory, use the following command:

npm install @apollo/client graphql

The updated dependencies section of your package.json file
should be like

"dependencies": {
"@apollo/client": "~3.12.5",
"graphql": "16.10.0",
"react": ""18.3.1",
"react-dom": "~18.3.1"

1

Apollo Client is a comprehensive library with quite a few classes and
methods defined in it. Out of which, a brief overview of some is worth
taking a look in order to understand how the GraphQL data is handled by
your React app.

The ApolloClient class is the most important part of Apollo’s client-
side library and is responsible for providing the view-layer integration with
React. An ApolloClient object handles fetching, caching, and managing

395

CHAPTER 10 REACTJS WITH DJANGO

data from your GraphQL API. The constructor needs two arguments: uri
(the endpoint of your GraphQL API) and cache (specifying the caching
strategy). Listing 10-20 shows the construction of ApolloClient object.

Listing 10-20. ApolloClient object

import { ApolloClient, InMemoryCache } from '@apollo/client’;
const client = new ApolloClient({

uri: "GraphQL API endpoint",

cache: new InMemoryCache(),

B;

The ApolloProvider is a React component that connects your Apollo
Client instance to your React app. It is also defined in the @apollo/
client package. The root App component of your React app returns the
ApolloProvider object, which makes it possible for the child components
to execute GraphQL queries and mutations (Listing 10-21).

Listing 10-21. ApolloProvider component

import { ApolloProvider } from "@apollo/client";
function App() {
return (
<ApolloProvider client={client}>
<div className="App">
<h1>React with Django GraphQL</h1>
<BookList />
</div>
</ApolloProvider>
);
}

Here, the BookList component executes a GraphQL query to fetch all
the books in a database.

396

CHAPTER 10 REACTJS WITH DJANGO

You have used a couple of React hooks (useState and useEffect) in
the previous section. Apollo Client provides its own React hook called
useQuery. The useQuery() function uses a GraphQL query string as an
argument and returns an object having the properties loading, error, and
data. The query string is returned by the gql() function. It is a template
literal tag provided by Apollo Client, used to write GraphQL queries and
mutations.

For example, when the allBooks query you used in the previous
chapter (Chapter 8) is passed to the gql () function, it parses into its
Apollo-compatible form. Refer the Listing 10-22 for the typical use of gql1()
function.

Listing 10-22. gql() function

const GET_DATA = gql®
query {
MyQuery {
field1
field2

The useQuery function then uses the object returned by gq1().
const { loading, error, data } = useQuery(MyQuery);

Here, loading indicates if the query is in progress; its value is either
True or False. Errors, if any, are stored in the error property. The data
property contains the result of the query. It is then used to render the
fetched rows in the App component.

397

CHAPTER 10 REACTJS WITH DJANGO

Graphene-Django Backend

In a previous chapter (Chapter 8), you learned how to build a Graphene-
Django project that serves a GraphQL API. We shall use the same code
base with a few React-related tweaks. Let us quickly go through the steps to
set up the GraphQL API:

e Asin the previous section, you need to include
'corsheaders’ in the INSTALLED_APPS list and also
'‘corsheaders.middleware.CorsMiddleware’ in the
MIDDLEWARE list in the settings.py file. You also
have to add the URL of the React Vite server (http://
localhost:5173) in the CORS_ALLOWED_ORIGINS list.
You also need to tell Django to use Graphene Schema
object from the app’s schema.py file.

e We shall be using the Book model as done earlier
(reproduced here in Listing 10-23).

Listing 10-23. Book model

class Book(models.Model):
id = models.IntegerField(primary key=True)
title = models.CharField(max_length=50)
author = models.CharField(max_length=50)
price = models.IntegerField()
publisher = models.CharField(max_length=50)

class Meta:
db_table = "books"

o Define a BookType class (Listing 10-24) that inherits
DjangoObjectType.

398

CHAPTER 10 REACTJS WITH DJANGO
Listing 10-24. BookType

class BookType(DjangoObjectType):

class Meta:
model = Book
fields = ("id", "title", "author", "publisher",
"price")

o Define a Query class with all_books and book
properties and the corresponding resolver methods
(as in Listing 10-25).

Listing 10-25. Graphene query

class Query(graphene.ObjectType):
all books = graphene.List(BookType)
book = graphene.Field(BookType, id=graphene.Int())

def resolve all books(self, info):
return Book.objects.all()

def resolve book(self, info, id):
try:
return Book.objects.get(pk=id)
except Book.DoesNotExist:
return None

A Schema class constructor uses this Query to return the
Schema object.

e Asdone earlier, define the generic
views (TicketlListCreateView and
TicketRetrieveUpdateDeleteView), and register
the GraphQLView with the "graphql/" endpoint.
Listing 10-26 shows the updated urlpatterns list.

399

CHAPTER 10 REACTJS WITH DJANGO

Listing 10-26. URL route for GraphiQL

from django.contrib import admin
from django.urls import path, include

from graphene django.views import GraphQLView
from django.views.decorators.csrf import csrf exempt
urlpatterns = [
path('admin/', admin.site.urls),
path('api/', include('api.urls')),
path("graphql/", csrf exempt(GraphQLView.as
view(graphiql=True))),
]

The URL http://localhost:8000/graphgl/ should present the GraphiQL
interface so that you can execute the al1Books query. Your GraphQL
backend is now ready to be used as a backend to the React app.

Apollo Frontend

To start with, create a new React app with the Vite build tool. It renders the
App component as the root of the DOM. Create a new JSX file (BookList.
jsx) in the project’s src folder. You need to declare an object of AppClient
class in the App.jsx file (refer Listing 10-27), with the endpoint of Django’s
GraphQL API as its uri parameter.

Listing 10-27. Root component for Apollo app

import { ApolloClient, InMemoryCache, ApolloProvider } from
"@apollo/client";

import BookList from "./BookList";

400

CHAPTER 10

const client = new ApolloClient({
uri: "http://localhost:8000/graphql/",
cache: new InMemoryCache(),

D

function App() {
return (
<ApolloProvider client={client}>
<div className="App">
<h1>React with Django GraphQL</h1>
</div>
</ApolloProvider>
);
}

export default App

BookList Component

REACTJS WITH DJANGO

This React component is expected to fetch the result of a GraphQL query
to be run over the Book model. The GraphQL query is first fed to the gq1()

function.

Listing 10-28. GET_BOOKS query

import { gql } from "@apollo/client";
const GET_BOOKS = gql”
query {
allBooks {
id
title
author

401

CHAPTER 10 REACTJS WITH DJANGO

publisher
price
}
}

5
The GET_BOOKS object (as in Listing 10-28) is used as an argument to

the useQuery hook and fetches the JSON representation of the list of books
(Listing 10-29).

Listing 10-29. BookList component

import { useQuery} from "@apollo/client";
function BookList() {
const { loading, error, data } = useQuery(GET BOOKS);

console.log("Query Response:", { loading, error, data });

if (loading) return <p>Loading...</p>;

if (error) return <p>Error: {error.message}</p>;
if (loading) return <p>Loading...</p>;
if (error) return <p>Error: {error.message}</p>;

return (

{data.allBooks.map((book) => (
<1i key={book.id}>
{book.title} by {book.author}
</1i>
)}

)5
}

export default BookList;

402

CHAPTER 10 REACTJS WITH DJANGO

The data returned by Apollo Client has the data attribute. Along with
the other HTTP-related attributes, it returns the query result in al1Books
property, which in turn is identified by the model attributes such as title,
author, etc. Use the map() function to render the book details as a part of
the BookList component.

Finally, update your App.jsx file (refer to the Listing 10-30) to include
the BookList component inside the root App Component.

Listing 10-30. App.jsx for Apollo app

function App() {
return (
<ApolloProvider client={client}>
<div className="App">
<h1>React with Django GraphQL</h1>
<BookList />
</div>
</ApolloProvider>
);
}

export default App

That'’s it. Run the React app (ensure that the Django server is running
and the GraphQL queries are executed correctly in the GraphiQL
interface). You should get a list of all the books and their authors rendered
in your browser.

As an exercise, you can add another component to perform mutation.
You can also refer to the previous section to add routing in the App

component.

403

CHAPTER 10 REACTJS WITH DJANGO

React for WebhSocket

In the previous chapter (Chapter 9), we had used JavaScript code inside
an HTML script to establish connection with the WebSocket endpoint
provided by a Django Channels application. Now, we shall build a simple
React app that works as the client for the Channels application.

Start by creating a new React app with the help of the Vite build tool.
You need to define a component that lets the user open a WebSocket
connection on the server and send a message. The server broadcasts
messages to all the connected clients.

Open a new code window in your IDE as ChatApp.jsx. In the
WebSocket client code, you have to record the states of username and
whether a username is set, the message to be sent, and a log of messages
from all the clients (Listing 10-31). This is done with the useState() hook.

Listing 10-31. ChatApp states

const [name, setName] = useState('');

const [isNameSet, setIsNameSet] = useState(false);
const [message, setMessage] = useState('');

const [messages, setMessages] = useState([]);

const [chatSocket, setChatSocket] = useState(null);

When the ChatApp component is first rendered, the useEffect()
hook will be invoked, and it will request a connection with the WebSocket
server, which is live on the Django application that is running in the
background.

const socket = new WebSocket('ws://127.0.0.1:8000/ws/socket-
server/');

Once the connection request is accepted, your React app will ask the
user to enter a username, as per the Listing 10-32.

404

CHAPTER 10 REACTJS WITH DJANGO

Listing 10-32. Chat app login screen

<form onSubmit={handleNameSubmit}>
<h1>Welcome to the Chat</h1>

<input
type="text"
placeholder="Enter your name"
value={name}
onChange={(e) => setName(e.target.value)}
required

/>

<nbsp> </nbsp>
<button type="submit">Join</button>
</form>

The browser should display an input text box for the username to be
entered. Figure 10-10 represents the login screen of your chat app.

3 © W/ Vite + React X + = 0 X
R G (@ localhost:5173 g S |

Welcome to the Chat

‘ 1 Please fill out this field. ‘

[Erw:er your name] Join

Figure 10-10. Login screen of Chat app

405

CHAPTER 10 REACTJS WITH DJANGO

The user input will be stored in the state variable name and also
isNameSet set to True. This is performed by the handleNameSubmit ()

function.

const handleNameSubmit = (e) => {
e.preventDefault();
setIsNameSet(true);

};

If the user has entered a username, you should get an interface
(Listing 10-33) to enter and send a message. This is stored in a state
variable message.

Listing 10-33. Chat interface

<h1>Welcome, {name}!</h1>
<form onSubmit={handleMessageSubmit}>
<input
type="text"
placeholder="Type your message"
value={message}
onChange={(e) => setMessage(e.target.value)}
required
/>
<nbsp> </nbsp>
<button type="submit">Send</button>
</form>

The browser shows the chat interface as in Figure 10-11.

406

CHAPTER 10 REACTJS WITH DJANGO

@ W Vite + React X -+ -] X
@

@
| ®
e () localhost5173 7 e B

Welcome, Alice!

| Type your message | Send

Figure 10-11. Chat interface

With the help of the handleMessagesubmit () function (the code
given in 10-34), the text entered in the input element is sent with the
chatSocket.send() method.

Listing 10-34. Handler to send message

const handleMessageSubmit = (e) => {
e.preventDefault();
if (chatSocket 8& chatSocket.readyState ===
WebSocket.OPEN) {
chatSocket.send(JSON.stringify({ message: “${name}:
${nessage}" }));

setMessage('');

407

CHAPTER 10 REACTJS WITH DJANGO

} else {
console.error('WebSocket is not open. Cannot send
message.');

}
};

In response, the server will broadcast the received messages to all the
clients (Listing 10-35). The client component adds it to the list.

Listing 10-35. Handler to receive messages

socket.onmessage = (event) => {
const data = JSON.parse(event.data);

if (data.type === 'chat') {
setMessages((prevMessages) => [...prevMessages, data.
message]);

}

};

The ChatApp component then renders all the message in the list by
running the map() loop.

<div id="messages">
{messages.map((msg, index) => (
<div key={index}>
<p>{msg}</p>
</div>
)}

</div>

Now, all you have to do is to embed the ChatApp component inside the
App component that is loaded as the root component (refer Listing 10-36)
of the DOM.

408

CHAPTER 10 REACTJS WITH DJANGO
Listing 10-36. Root component of Chat app

import React from 'react’;
import ChatApp from './ChatApp';

const App = () => {
return (
<div>
<ChatApp />
</div>
);
};

export default App;

The chat log will appear in the messages div element.
The screenshot of the browser output is shown in Figure 10-12.

: @ W Vite + React X -+ -] X

<« O (D localhost:5173 e = [

Welcome, Alice!
.|_T'yfpe your message]

Alice: Hi all

Brian: Hi Alice

Figure 10-12. Chat log

409

CHAPTER 10 REACTJS WITH DJANGO

As far as the backend is concerned, you don’t need to make any
changes to the Channels application used in the previous chapter
(Chapter 9), except for adding the CORS settings. You can refer to the
previous section of this chapter for the steps in CORS configuration.

Summary

This was the last chapter of this book. Our journey has reached the last
stop, where you have learned how to provide React frontend solutions
for the Django REST, GraphQL, and Channels apps. Along the way, the
JavaScript libraries Axios and Apollo Client were introduced.

Starting with the basics of HTTP and asyncio, this book navigated
you through the core concepts of Django (such as model, view, and
templates) as well as the advanced concepts such as messages framework,
authentication, and using SQLAlchemy. The second half of the book
covered how Django implements the REST, GraphQL, and WebSocket
protocols, culminating in this chapter on React with Django. With this,
hopefully this book has given an experience of full-stack web application
development with the Django ecosystem as its backend and React as its
frontend.

410

Index

A

Adapter functions, 217
add_message() methods, 193
AddTicket component,
387, 390-394
Admin interface
adding user, 46, 47
createsuperuser command, 44
django.contrib.admin app, 43
home page, 46
internal management tool, 43
login screen, 45, 46
migrate command, 44
types
active, 48
staff, 47
superuser, 47
urls.py file, 43
user permissions, 48
Alembic, 156-161
Anti-CSRF mechanism, 208
API, see Application Programming
Interface (API)
Api.get() method, 388
api_root() function, 242
Apiroot, Django REST app, 385
API services, 14

© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3

api_view() decorator, 239
Apollo
arguments, 396
BookList component, 401-403
client, 395
data fetching mechanism, 395
dependencies, 395
frontend, 400, 401
gql() function, 397
graphene-Django
backend, 398-400
GraphQL, 395, 396
server component, 395
ApolloClient object, 395
ApolloProvider component, 396
Application Programming
Interface (API)
description, 230
environments, 230
payment apps, 230
protocols and specifications,
232,233
social login, 230, 231
software applications, 230
weather apps and websites, 231
ASG]I, see Asynchronous Server
Gateway Interface (ASGI)
Ariadne, 308

411

https://doi.org/10.1007/979-8-8688-1472-3#DOI

INDEX

AsyncGraphQLView, 316
asyncHello() function, 17
Asynchronous consumer, 348
Asynchronous processing
asyncio module, 16-18
multithreading, 16
web servers, 16
Asynchronous Server Gateway
Interface (ASGI), 19-20
Asynchronous views (async
views)
adapter functions, 217
ASGI server, 213
async_call() function, 216
async Querysets, 218
definition, 214
helper function, 216
HTTPX library, 215
install Uvicorn, 214
sleep() function, 215
terminal log, 214
Asyncio module, 16-18
async_to_sync(), 217
Atlas, 163
connection string, 165
Authentication system, 229
admin home page, 204
admin interface, 197
browsable API, 279
description, 276
login and logout, 198-201
@login_required(), 204-206
managerial tasks, 197
new user, 202-204

412

permission_classes
attribute, 278
permission types, 278
python manage.py
createsuperuser, 198
redirect login page, 206
schemes, 277
TokenAuthentication, 280-288
unauthenticated request, 279
AuthMiddleware, 350
AuthMiddlewareStack, 350, 360
Axios
API services, 376
attributes, 378
component tab, 378, 379
console, 377, 378
definition, 375
dependencies, 375
DRF backend, 381-384
frontend
AddTicket component,
387, 390-393
creation, 385
navigation, 387
routing, 386, 387
TicketList component,
386-388, 390
GET request, 377
GET response, 379, 381
HTTP requests, 375
installation, 375
module, 376
parameters, 375
axios.get() function, 377

B

BasicAuthentication, 277, 280
Binary JSON (BSON), 162
BookList component, 401-403
BooleanField, 74
BrowserRouter, 386

C

Cacheability, 234
Callback function, 373
Channel layers, 347
backends, 355
definition, 354
distributed real-time
application, 354
groups, 356-358
in-memory layer, 355
setting, 355
single channel, 356
Channels architecture, 347
channels.layers.get_channel
layer(), 354
CharField, 73

Chat app
interface, 406, 407
log, 359, 409

login screen, 404, 405
root component, 408
states, 404

chatSocket.send() method, 407

Class-based views,
111-114, 264-266
Client interface, 353

INDEX

Client-server architecture, 234
Client-side frameworks, 12
Code on demand, 235
col.find(filter), 173
col.find_one(filter), 173
College model, 78
Common Gateway
Interface (CGI), 6, 7
CONNECT method, 5
Context hooks, 365
CookieMiddleware, 350
Cookies, 188, 189
Cooperative multitasking, 16, 18
Coroutines, 17, 19
CORS, see Cross-origin resource
sharing (CORS)
CreateAPIView, 267
createBook() function, 321
createRoot() function, 368
create_superuser() function, 48
create_user() function, 49
CreateView, 116-118
Cross-origin resource
sharing (CORS)
ecosystem, 382
mechanism, 382
model, 383
serializer, 383
URL routes, 384
views, 383, 384
Cross-site request forgery (CSRF),
101, 207-209
Cross-site scripting (XSS),
209, 210

413

INDEX

CRUD operations, 51, 52, 71, 153,
164, 184, 243, 247, 267, 270,
292,317

CSRE see Cross-site request
forgery (CSRF)

csrfmiddlewaretoken, 208

CsrfViewMiddleware, 101

CSSfile, 131, 133, 134

D

Database API (DB-API)
books table, 54
books view, 55, 56
create table, 53
definition, 52
execute() method, 53, 54
issues, 57
relational databases, 52
SQLite, 52-54
update urlpatterns, 55, 56
Database interaction, 14
DateField, 74
Data integrity, 77
Data redundancy, 77
DB-AP], see Database API (DB-API)
Debug toolbar
admin home page, 225
application routes, 225
MIDDLEWARE list, 225
panels, 226
request panel, 228
reusable app, 224
SQL explained, 227

414

SQL panels, 226, 227
use cases, 223
web applications, 224
DeclarativeBase class, 152
DefaultRouter, 274
delete_cookie() method, 189
DELETE method, 5
delete_one() method, 175
DeleteView, 119-121
demo_app() function, 9
Deserialization, 235, 237
deserialize() function, 236
DestroyAPIView, 268
DetailView, 121, 122
Django
apps
add, 35
admin site, 43-49
components, 34
MVT approach, 34
path parameters, 38-40
route, 38
serving web pages, 40-42
structure, 34
URLCONE 37, 38
URL pattern, 36, 37
views, 35
async views, 213-218
authentication, 197-206
channels, 289, 344-347
components, 21
debug toolbar, 223-228
documentation and support, 22
GraphQL (see GraphQL)

installation
Python, 24
Ubuntu, 24-27
Windows, 28
messages (see Messages
framework)
ORM (see Object-relational
mapper (ORM))
React]S (see React]S)
REST API, 229
reusable apps, 218-223
scalability, 22
security features, 207-213
setting up
activity log, 31
administrative tasks, 30
ASGI-compatible mode, 33
asgi.py, 30
components, 29
django-admin utility, 29
parameters, 30
project structure, 29
server, 32
settings.py, 30
urls.py, 30
WSGI-compatible
framework, 32
wsgi.py, 30
template language (see
Templates)
utility apps, 21
version, 1, 24
web development, 1
WebSocket (see WebSockets)

INDEX

Django-admin utility, 27, 29
Django Ninja, 288

decorator methods, 290
dependencies, 289

features, 289, 290, 297

HTTP methods, 297

JSON response, 294

NinjaAPI object, 290
Pydantic data validation, 289
schema, 292

Swagger Ul, 291, 293, 295, 297

Django REST Framework (DRF), 237

alternatives, 288, 289
apiroot, 243, 275, 276
api_view() decorator, 239
authentication, 238, 276-288
authorization, 238
browsable API, 240, 241
class-based views, 239, 264-266
CRUD operations, 243
description, 238
features, 238
generic views, 267-270
ModelSerializer (see
ModelSerializer)
package, 238
PIP installer, 238
reverse() function, 242
routers, 273-275
serializer class (see
Serialization)
URL route, 240
using APIView, 266
ViewSets, 271-273

415

INDEX

Django Software Foundation, 21
Django-sorcery package, 161
Django Template Language (DTL),
86, 90, 92, 105, 364
Djongo, 170
DATABASES configuration, 185
drawbacks, 186
hybrid model, 184
installation, 184
migrations, 185
mongodb query transpiler, 184
project’s settings, 185
Document object model
(DOM), 365
Document schema, 177
dot (.) operator, 92
Downgrade command, 160
DynamicDocument, 181-183
Dynamic schema, 186

E

Effect hooks, 365

Environment variables, 213

execute() method, 53, 54, 58, 212

Extensible Markup Language
(XML), 235

eXternal Data Representation
(XDR), 232

F

Fetch, 374
fetchone() method, 56

416

Field types
API methods, 73
attribute, 72
BooleanField, 74
CharField, 73
DateField, 74
FloatField, 74
IntegerField, 73
File uploads, 13
filter() method, 69, 71
find() method, 174
FloatField, 74
Foreign key, 76, 77
Form templates
class, 103-107
HTML, 100, 102, 103
ModelForm, 108-111
view functions, 100
Full stack frameworks, 13
Function-based views, 269, 281

G

Generic Security Service
Application Program
Interface (GSSAPI), 171

Generic views

categories, 267
CreateView, 116-118
CURD operations, 267
database models, 267
DeleteView, 119-121
DetailView, 121, 122
function-based views, 269

HTML form, 270, 271
HTML templates, 267
ListView, 122-125
request handlers, 269
special-purpose class, 114
syntax pattern, 268
TemplateView, 114-116
UpdateView, 118, 119
urlpatterns, 268, 270
get() method, 67, 71
getbook() function, 105, 110
getbook() view function, 175
get_context_data() method, 123
get_cookie() method, 189
GET method, 4
get_object() method, 120
Google Remote Procedure Call
(gRPC), 232
gql() function, 397, 401
Graphene, 308, 309
execute() function, 325, 326
features, 322
mutations, 328
mutation string, 329
object type, 323
query, 324, 327
resolver method, 324, 325, 327
scalar types, 323
schema-first approach, 322
Graphene-Django, 289
abstractions, 330
schema, 334
configuration, 331
DjangoObijectType class, 331

INDEX

installation, 330

mutation, 333

ORM models, 308

queries, 332

root schema, 331

URLCONE, 332
Graphene-Django project, 398-400
GraphiQL interface, 312, 313,

315,319

GraphQL

API technology, 299

architecture, 301, 302

Graphene, 322-330

Graphene-Django, 330-334

mutation, 314

and Python, 308, 309

vs. REST, 300, 301

schema, 308

SDL (see Schema definition

language (SDL))

Strawberry, 309-316

Strawberry-Django, 316-322
GraphQLView, 317, 332
group_add() method, 357
group_discard() method, 357
Groups, 356, 357
group_send() method, 357

H

handleMessagesubmit()
function, 407

handleNameSubmit()
function, 406

417

INDEX

handleSubmit() function, 391
HEAD method, 5
Hooks, 365
HTML form, 100, 102, 103
HTTP, see Hypertext Transfer
Protocol (HTTP)
HyperlinkedModel
Serializer, 259-263
Hypertext Transfer
Protocol (HTTP)

client-server communication

model, 2
constituents, 3
DELETE method, 5
GET method, 4
limitations, 335
POST method, 4
PUT method, 5
request-response cycle, 2
verbs/methods, 234

Inheritance

{% block %} tag, 139, 140

definition, 134

{% extends %} tag, 140-143

{% include %} tag,

135, 136, 138

web pages, 135

In-memory channel
layer, 355

insertOne() function, 166
IntegerField, 73

418

J, K

JavaScript, 131, 133, 134, 353

JavaScript Object Notation (JSON),
235, 236, 253, 263

JSON Web Token (JWT)
authentication, 288

L

Layered system, 235
ListAPIView, 267
ListCreateAPIView, 269
ListView, 122-125

Local deployment, 162, 163
login_user() view, 199
log_out() view, 200

make_server() method, 9
Many-to-many relationship,
80-82
map() function, 379, 388, 403
MessageMiddleware, 191
Messages framework
activation, 190, 191
adding, 193
cookies, 188, 189
definition, 188
design considerations, 187
fetching, 194-197
flashed message, 197
login screen, 196
notifications, 187

sessions, 189, 190
storage backends, 192
Microframeworks, 13
Migration, 62, 64, 66, 156
ModelForm, 108-111, 117
ModelSerializer
@api_view decorator, 252
browsable API, 253, 254, 257
conditional blocks, 256
DELETE button, 257
fields, 250
GET and POST
methods, 252
GET request, 251
HTTPie app, 258, 259
hyperlinks, 259-263
implementations, 249
individual field
attributes, 250
JSON response, 251, 252
Meta class, 250
PUT button, 257, 258
returning 201 response,
254, 255
save() method, 253
tools, 258
URL mapping, 251
urlpatterns, 255
Model-view-controller
(MVC), 14, 15
ModelViewSet, 272, 273
Model-view-template
(MVT), 15, 16
MongoDB, 145, 161

INDEX

Compass
adding document, 168
approaches, 170
connect Atlas, 170
connection string, 168, 169
GUI tool, 166
local MongoDB server, 167
definition, 162
document-oriented
database, 162
installation
Atlas, 163
local deployment, 162, 163
network access
whitelist, 164
shell, 164-166
MongoDB Query Language
(MQL), 184
MongoEngine, 170
connection, 178, 179, 181
document class, 177,178
DynamicDocument, 181-183
installation, 176
ORMs, 176
relational databases, 176
mutate() method, 328, 333
Mutation, 305, 306, 313, 321, 328, 333
mydb database, 179
myfunction() function, 131
MySQL database, 61

N

NOSQL databases, 161

419

INDEX

O

OAuth2Authentication, 288
Object-Document Mapper
(ODM), 176
Object-relational mapper
(ORM), 59
admin shell
add objects, 66, 67
parameters, 65
retrieval, 67-69
search, 69, 70
updating objects, 70, 71
admin site, 64, 65
API, 58
CRUD operations, 51
database configuration,
61, 62
DB-API, 52-56
definition, 57
execute() method, 58
field types, 72-75
interface, 58
libraries, 59
model class, 60, 61
run migrations, 62, 64
SQLAlchemy (see
SQLAlchemy ORM)
types of relationships (see
Relationships)
Object types, 303
One-to-many relationship, 79
One-to-one relationship, 77, 78
OPTIONS method, 5

420

ORM, see Object-relational
mapper (ORM)

P

PATCH method, 5
path() function, 36
POST method, 4
Primary key, 75, 76, 122, 129, 177,
256, 260
Principal model, 78
Promises, 370, 371
Protocol router, 350
ProtocolTypeRouter, 346, 349
PUT method, 5
PyMongo, 170
install dnspython, 171
insert document, 172
libraries, 171
parameters, 171
retrieval, 173-176
startproject command, 171
Python, 24
GraphQL, 308, 309
libraries, 308
web frameworks, 316
webSockets, 338-344
Python Enhancement Proposal
(PEP), 7

Q

Queries, 304, 305, 310, 332
Queryset methods, 218

R

React]S
advantages, 364
Apollo (see Apollo)
apps, 366-369
axios (see Axios)
components, 365
developer tools, 370
hooks, 365
library, 364
promises, 370, 371
props, 365
useEffect hook, 373, 374
useState hook, 372, 373
virtual DOM, 365
WebSocket, 404-410
react-router-dom library, 386
Redis channel layer, 355
register() method, 273, 274
register_user() view, 202
Regular expressions, 350
Relational databases, 52, 59, 75, 77,
161, 176
RElational State Transfer (REST),
see REST API
Relationships
description, 75
foreign key, 76, 77
many-to-many
relationship, 80-82
one-to-many relationship, 79
one-to-one relationship,
77,78
primary key, 75, 76

INDEX

typo errors, 77
Remote Procedure Call
(RPC), 232
render() function, 41, 42
render() method, 89-91
re_path() function, 350
Request-response cycle, 2, 3
Request-response model, 345
REST API
architecture
advantages, 233
cacheability, 234
client-server, 234
code on demand, 235
HTTP standards, 233
layered system, 235
statelessness, 234
URI, 233
DREF (see Django REST
Framework (DRF))
features, 229
vs. GraphQL, 300, 301
serialization, 235-237
RetrieveAPIView, 268
RetrieveDestroyAPIView, 269
RetrieveUpdateAPIView, 269
RetrieveUpdateDestroy
APIView, 269, 270
Reusable apps, 218-223
reverse() function, 242
Routers, 273-275
Routing, 349-351, 353
run() function, 17
Runserver command, 346

421

INDEX

S

Scalar types, 303
Schema, 307, 309
Schema definition language (SDL)

mutations, 305, 306
queries, 304, 305
schema, 307, 309
structure, 302
subscription, 306
types, 302, 303

script.py.mako template, 157
Secret key, 213
Security features

CSRE, 207, 208
SQL injection, 211-213
XSS, 209, 210

Serialization, 229, 235-237

attributes, 245, 246
CRUD operations, 247
data formats, 244
description, 244
features, 244
field types, 248
methods
create(), 249
is_valid(), 248
save(), 249
update(), 249
validate(), 248
rest_framework package, 246
ticket model, 244, 247

serialize() method, 236
serve_forever() method, 9

422

Server-side frameworks, 12

SessionManager factory, 154

SessionMiddleware, 191, 350

Sessions, 189, 190

set_cookie() method, 188

setCount() function, 372

setData() function, 379

setup() function, 221

Simple Object Access Protocol

(SOAP), 232

SimpleRouter, 274

Single channel layer, 356

sleep() function, 17

SQLAlchemy ORM
components, 146
constituents, 146
database, 146
data mapper pattern, 147
engine, 148, 149
high-level abstraction, 146
installation, 148
model, 151, 153
schematic diagram, 147, 158
session, 153, 154, 156
table, 149, 150

SQL Expression Language

(SQEL), 146

SQL injection, 211-213

SQLite, 52-54, 148

SQLite database, 330

Sqlmigrate command, 81

Start_response, 7

State hooks, 365

Statelessness, 234

Static files
asset, 129, 130, 132
configurations, 125
CSSfile, 127,131, 133, 134
definition, 125
deployment, 126
directories, 126
href attribute, 127
image example, 131
JavaScript, 131, 133, 134
runserver command, 126
stylesheet, 128
web server, 126
Strawberry, 308, 309
code-first approach, 310
description, 309
fields, 310
GraphQL schema, 310
mutation, 313
package, 311
PIP installer, 309
query, 310, 312
resolver functions, 314, 316
server, 312
type, 310
variables, 314, 315
Strawberry-Django
AsyncGraphQLView, 317
CRUD operations, 317
data-driven GraphQL
API, 316
filtered query, 320, 321
functionality, 317
implementation, 319

INDEX

installation, 316

models.py code, 318

mutation, 321

output pane, 321, 322

package, 316

query designer, 319

query fetching books, 320

resolver function, 319

@strawberry_django.field

decorator, 318
strawberry.Schema()
constructor, 311

@strawberry.type decorator, 310
Subject model, 80
Subscription, 306
Swagger Ul

documentation, 291

GET and POST endpoints, 295

request body, 295, 296

response, 296, 297

testing, 292

TicketSchema, 293
Synchronous consumer, 348
sync_to_async(), 217
SyncToAsync wrapper, 20

T

Tastypie, 288
Teacher model, 80
Templates
class-based views, 111-114
conditional request
handling, 112

423

INDEX

Templates (cont.) command terminal, 287, 288
context, 90-92 token generation, 286
engine, 86, 87 mechanism, 281
form (see Form templates) migrations, 280
generic views, 114-125 security risk, 280
index view, 88 string, 282
inheritance, 134-143 token key, 284
limitations, 364 Tokens model, 282
object, 86-89 TRACE method, 5
rendering, 89, 90 Transmission control protocol
settings, 87 (TCP), 335
static files, 125-134 Two-way full-duplex
tags communication, 337

{% for %}, 96-99
{% if %}, 93-96

symbols, 92 U
user view with parameter, 88 Ubuntu, 24-27
using loop, 99 Uniform Resource Identifier
view class example, 112 (UR1), 233
web page, 90 UpdateAPIView, 268
TemplateView, 114-116 update_book() function, 322
TicketList component, UpdateView, 118, 119
386-388, 390 URLCONE 30, 37, 38, 240, 273, 278,
Ticket model, 292 317, 332, 352
TokenAuthentication, 277, 281 URL dispatcher, 15
adding token, 283 URL mapping, 13
administration, 282 useEffect() hook, 373, 374, 378,
authenticated view, 285 379, 404
client-server setups, 280 useQuery() function, 397
function-based view, 281 UserCreationForm, 203, 204
HTTPie user() function, 38
authenticated response, User interfaces (Uls), 364
286, 287 User management, 13

424

useState() hook, 372, 373, 404
Utility apps, 21

\'

ViewSets
compound generic
classes, 271
definition, 271
HTTP handler methods, 272
ModelViewSet, 272, 273
URL routes, 274, 275
Virtual DOM, 365
Virtual environments, 24-26, 28

W XY,Z
Web application frameworks,
see Web frameworks
Web frameworks, 11
backend, 12
definition, 11
features, 13
frontend, 12
network-related operations, 13
tasks, 13, 14
types, 12
Web Server Gateway Interface
(WSGI), 7, 8, 11
WebSocket, 19
channels application, 404
chat app
interface, 406, 407

INDEX

log, 409

login screen, 404, 405

root component, 408

states, 404
connection, 404
handler to receive message, 408
handler to send message, 407

WebsocketConsumer, 348
WebSockets

channel layers, 354-358
channels group chat, 360
client, 344
client template, 358-360
communication, 336
consumers, 348
Django channels, 344-347
index template, 351
login and logout functions,
360, 361
object, 337
protocol, 335-338
and Python
client code, 341
client terminal, 342
connect() method, 341
coroutine-based API, 338
handler, 339
HTML script, 342, 343
library, 339
serve() method, 339
server code, 340
server loop, 339
server terminal, 342

425

INDEX

WebSockets (cont.)
receiving messages, 338
routing, 349-351, 353
send() method, 338
WebSocketServerProtocol, 339

426

Windows, 28

World Wide Web (WWW), 2, 6, 188

WSGI-compliant development
server, 345

wsgiref package, 8-11

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Django Basics
	Introduction
	Fundamentals of HTTP
	HTTP Methods
	POST Method
	GET Method
	PUT Method
	DELETE Method

	CGI
	WSGI
	wsgiref Package
	What Is a Web Framework?
	MVC vs. MVT
	Asynchronous Processing
	asyncio Module

	ASGI
	Overview of Django
	Batteries Included
	Utility Apps
	Scalability
	Documentation and Support

	Summary

	Chapter 2: Django: First Steps
	Install Django
	Installation on Ubuntu
	Installation on Windows

	Set Up the Django Project
	Django App
	Add an App
	Define Views
	Define urlpatterns
	Update URLCONF
	Path Parameters
	Serving Web Pages

	Admin Site
	Summary

	Chapter 3: Django ORM
	DB-API
	What Is ORM?
	Define a Model
	Database Configuration
	Run Migrations
	Register Model with Admin Site
	Django Admin Shell
	Add Objects
	Retrieval
	Search
	Updating the Objects

	Model Field Types
	CharField
	IntegerField
	FloatField
	BooleanField
	DateField

	Types of Relationships
	One-to-One Relationship
	One-to-Many Relationship
	Many-to-Many Relationship

	Summary

	Chapter 4: Django Templates
	Template Object
	render() Function
	Template Context
	Template Tags
	{% if %} Tag
	{% for %} Tag

	Form Templates
	HTML Form
	Form Class
	ModelForm

	Class-Based View
	Generic Views
	TemplateView
	CreateView
	UpdateView
	DeleteView
	DetailView
	ListView

	Static Files
	Image As Static Asset
	CSS and JavaScript

	Template Inheritance
	{% include %} Tag
	{% block %} Tag
	{% extends %} Tag

	Summary

	Chapter 5: Django: Using Databases
	SQLAlchemy ORM
	Engine
	Table in SQLAlchemy Core
	Model
	Session

	Alembic
	Advent of NOSQL Databases
	MongoDB
	Installation
	Local Deployment
	Atlas
	MongoDB Shell
	Compass

	PyMongo
	Insert Document
	Retrieval

	MongoEngine
	Document Class
	Connection
	DynamicDocument

	Djongo
	Summary

	Chapter 6: Advanced Django
	Messages Framework
	Cookies
	Sessions
	Activating Messaging
	Storage Backends
	Adding Messages
	Fetching Messages

	Authentication
	Login and Logout
	New User
	@login_required()

	Security Features
	CSRF
	XSS
	SQL Injection

	async Views
	Adapter Functions
	async QuerySets

	Reusable Apps
	Django Debug Toolbar
	Summary

	Chapter 7: REST API with Django
	What Is API?
	REST Architecture
	Uniform Interface
	Statelessness
	Client-Server
	Cacheability
	Layered System
	Code on Demand

	Serialization
	Django REST Framework
	DRF – Get Started
	Serializer Class
	Serializer Fields
	Serializer Methods

	ModelSerializer
	HyperlinkedModelSerializer

	DRF – Class-Based Views
	DRF – Generic Views
	ViewSets
	ModelViewSet

	Routers
	DRF – Authentication
	TokenAuthentication

	Alternatives to DRF
	Django Ninja
	Summary

	Chapter 8: GraphQL with Django
	GraphQL vs. REST
	GraphQL Architecture
	Schema Definition Language
	Types
	Queries
	Mutations
	Subscriptions
	Schema

	GraphQL and Python
	Strawberry
	Strawberry-Django
	Graphene
	Graphene-Django
	Summary

	Chapter 9: WebSockets with Django
	WebSocket Protocol
	WebSocket and Python
	Django Channels
	Consumers
	Routing
	Channel Layers
	Single Channel
	Groups

	WebSocket Client Template
	Login/Logout
	Summary

	Chapter 10: ReactJS with Django
	ReactJS
	React App
	React Developer Tools
	What Is Promise?
	useState Hook
	useEffect Hook
	Axios
	DRF Backend
	Cross-Origin Resource Sharing (CORS)

	Axios Frontend
	TicketList Component
	AddTicket Component

	Apollo
	Graphene-Django Backend
	Apollo Frontend
	BookList Component

	React for WebSocket
	Summary

	Index

