
Modern
Django Web
Development

With Channels, DRF, GraphQL,
and React
—
Malhar Lathkar

Modern Django Web
Development

With Channels, DRF, GraphQL,
and React

Malhar Lathkar

Modern Django Web Development: With Channels, DRF, GraphQL,

and React

ISBN-13 (pbk): 979-8-8688-1471-6 ISBN-13 (electronic): 979-8-8688-1472-3

https://doi.org/10.1007/979-8-8688-1472-3

Copyright © 2025 by Malhar Lathkar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or

part of the material is concerned, specifically the rights of translation, reprinting, reuse of

illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,

and transmission or information storage and retrieval, electronic adaptation, computer software,

or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark

symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,

and images only in an editorial fashion and to the benefit of the trademark owner, with no

intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if

they are not identified as such, is not to be taken as an expression of opinion as to whether or not

they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of

publication, neither the authors nor the editors nor the publisher can accept any legal

responsibility for any errors or omissions that may be made. The publisher makes no warranty,

express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: James Robinson-Prior, Divya Modi

Development Editor: James Markham

Coordinating Editor: Jacob Shmulewitz

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New

York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@

springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and

the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).

SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for

reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook

versions and licenses are also available for most titles. For more information, reference our Print

and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is

available to readers on GitHub (https://github.com/Apress). For more detailed information,

please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Malhar Lathkar
Nanded, Maharashtra, India

https://doi.org/10.1007/979-8-8688-1472-3
https://orcid.org/0009-0005-7275-9053

It's been a great privilege to have learned from
many exceptional teachers, who taught from the heart

and not just the book.

I dedicate this work to all of them.

v

Table of Contents

About the Author ...xiii

About the Technical Reviewer ..xv

Acknowledgments ..xvii

Introduction ...xix

Chapter 1: Django Basics ...1

Introduction ...1

Fundamentals of HTTP ..2

HTTP Methods ...4

POST Method ...4

GET Method ...4

PUT Method ...5

DELETE Method ...5

CGI ...6

WSGI..7

wsgiref Package ...8

What Is a Web Framework? ..11

MVC vs. MVT ...14

Asynchronous Processing ...16

asyncio Module ...16

ASGI ..19

vi

Overview of Django ...21

Batteries Included ...21

Utility Apps ...21

Scalability ..22

Documentation and Support ..22

Summary...22

Chapter 2: Django: First Steps ..23

Install Django ..24

Installation on Ubuntu..24

Installation on Windows...28

Set Up the Django Project ...29

Django App ..33

Add an App ..35

Define Views ..35

Define urlpatterns ..36

Update URLCONF ...37

Path Parameters ..38

Serving Web Pages ..40

Admin Site ...43

Summary...49

Chapter 3: Django ORM ...51

DB-API ...52

What Is ORM? ..57

Define a Model ..60

Database Configuration ...61

Run Migrations ..62

Register Model with Admin Site ..64

TABLE OF CONTENTS

vii

Django Admin Shell ...65

Add Objects ...66

Retrieval ..67

Search ...69

Updating the Objects ...70

Model Field Types ...72

CharField ...73

IntegerField ...73

FloatField ...74

BooleanField ..74

DateField ...74

Types of Relationships ..75

One-to-One Relationship ...77

One-to-Many Relationship ...79

Many-to-Many Relationship ..80

Summary...82

Chapter 4: Django Templates ..85

Template Object ..86

render() Function ..90

Template Context ..90

Template Tags ...92

{% if %} Tag ...93

{% for %} Tag ...96

Form Templates ..100

HTML Form ..100

Form Class ...103

ModelForm ..108

TABLE OF CONTENTS

viii

Class-Based View ...111

Generic Views ...114

TemplateView ..114

CreateView ..116

UpdateView ...118

DeleteView ...119

DetailView ..121

ListView ...122

Static Files ..125

Image As Static Asset ..129

CSS and JavaScript ...131

Template Inheritance ..134

{% include %} Tag ..135

{% block %} Tag ...139

{% extends %} Tag ...140

Summary...143

Chapter 5: Django: Using Databases...145

SQLAlchemy ORM ...146

Engine ..148

Table in SQLAlchemy Core ...149

Model ...151

Session ..153

Alembic ...156

Advent of NOSQL Databases ...161

MongoDB...162

TABLE OF CONTENTS

ix

Installation ..162

Local Deployment ..162

Atlas ..163

MongoDB Shell ..164

Compass ..166

PyMongo ...171

Insert Document ..172

Retrieval ..173

MongoEngine ..176

Document Class ...177

Connection ...178

DynamicDocument ..181

Djongo ...183

Summary...186

Chapter 6: Advanced Django ..187

Messages Framework ...187

Cookies ..188

Sessions ..189

Activating Messaging ..190

Storage Backends ...192

Adding Messages ..193

Fetching Messages ..194

Authentication ...197

Login and Logout ...198

New User ...202

@login_required() ...204

TABLE OF CONTENTS

x

Security Features ..207

CSRF ..207

XSS ..209

SQL Injection ...211

async Views ..213

Adapter Functions ...217

async Querysets ..218

Reusable Apps ..218

Django Debug Toolbar ...223

Summary...228

Chapter 7: REST API with Django..229

What Is API? ..230

REST Architecture ...233

Uniform Interface ...233

Statelessness ..234

Client-Server ...234

Cacheability ...234

Layered System ...235

Code on Demand ...235

Serialization ..235

Django REST Framework ..238

DRF – Get Started ..238

Serializer Class ..244

ModelSerializer ..249

DRF – Class-Based Views ..264

DRF – Generic Views ...267

ViewSets ..271

TABLE OF CONTENTS

xi

Routers ..273

DRF – Authentication ...276

Alternatives to DRF ...288

Django Ninja ..289

Summary...298

Chapter 8: GraphQL with Django ...299

GraphQL vs. REST ...300

GraphQL Architecture ..301

Schema Definition Language ..302

Types ...302

Queries ..304

Mutations ...305

Subscriptions ...306

Schema..307

GraphQL and Python ...308

Strawberry ..309

Strawberry-Django ..316

Graphene ...322

Graphene-Django ..330

Summary...334

Chapter 9: WebSockets with Django ...335

WebSocket Protocol ..336

WebSocket and Python ...338

Django Channels ...344

Consumers ..348

Routing ..349

TABLE OF CONTENTS

xii

Channel Layers ...354

Single Channel...356

Groups ...356

WebSocket Client Template ...358

Login/Logout ...360

Summary...362

Chapter 10: ReactJS with Django ...363

ReactJS ...364

React App ..366

React Developer Tools ...370

What Is Promise? ..370

useState Hook ...372

useEffect Hook ..373

Axios ...374

DRF Backend ...381

Axios Frontend ...385

Apollo ..394

Graphene-Django Backend ..398

Apollo Frontend ...400

BookList Component..401

React for WebSocket ...404

Summary...410

 Index ...411

TABLE OF CONTENTS

xiii

About the Author

Malhar Lathkar brings over 35 years of

experience as an independent software

developer, entrepreneur, author, trainer,

and mentor. Though formally trained in

electronics at the postgraduate level, he has

successfully transitioned into the profession of

software training and development as a self-

taught expert.

A passionate educator at heart, Malhar has

positively impacted the careers of countless

students and professionals worldwide,

particularly in the technologies related to

Python and Java. He actively collaborates with various EdTech companies

as a subject matter expert, contributing to the design of high-quality

training programs.

He is a recognized author with works featured by prominent

publishing houses, including his 2023 FastAPI book with Apress. Malhar

also provides corporate training. He is frequently invited to conduct

workshops and deliver technical talks to students in various institutions.

Beyond his professional pursuits, Malhar enjoys Indian classical music

and is an avid sports enthusiast.

xv

About the Technical Reviewer

Rajiv Tulsyan is an accomplished Solutions

Architect with a distinguished career spanning

over two decades, marked by a proven track

record in architecting distributed systems and

driving enterprise-level technology road maps

on a global scale. His expertise encompasses

a spectrum of skills, from designing and building accelerators to a deep

understanding of SOA, event-driven, and Microservices event-based

architectures. Rajiv’s mastery extends to cloud technologies, including

Hybrid Cloud Architecture and managed services, coupled with

proficiency in Java, Kubernetes, Docker, and API gateway technologies.

As a Solutions Architect, he is currently steering the design of architecture

strategies for large-scale application deployments, showcasing his

commitment to scalable, resilient, and innovative solutions. Rajiv’s career

journey reflects not only technical acumen but also leadership and a

passion for developing technical talent, positioning him as a luminary in

the ever-evolving landscape of technology.

With an academic background featuring an MS in Consulting

Management from BITS Pilani, India, and an MCA in Computer

Application from MDU Rohtak, Rajiv Tulsyan has seamlessly blended

theoretical knowledge with practical application throughout his career.

From leading a medium-sized Integration Architecture practice at

Software AG to heading the B2B Practice and Knowledge Management

Practice, Rajiv’s management experience is as robust as his technical

expertise. His commitment to excellence is underscored by certifications

xvi

such as WebMethods 9.0 Certified ESB Developer, WebMethods Certified

BPM Developer, and TOGAF 9.2: Enterprise Architecture, positioning him

as a thought leader in the field. Rajiv Tulsyan’s career stands as a testament

to his dedication to pushing the boundaries of technology and fostering an

atmosphere of technical excellence.

ABOUT THE TECHNICAL REVIEWER

xvii

Acknowledgments

My previous work High-Performance Web Apps with FastAPI, published

by Apress (Springer Nature) in 2023, has been well received. I am deeply

grateful to them for their continued support. It is a privilege to partner with

a distinguished brand like Apress. I thank the editorial team for entrusting

me with another opportunity to share my knowledge through this book.

This book would not have been possible without the invaluable

contributions of many individuals. First and foremost, I extend my

heartfelt gratitude to James Robinson-Prior and Divya Modi – both highly

skilled editors – for their support, guidance, and feedback during the

various stages of the process of finalizing the draft of this book.

I would also like to express my sincere appreciation to Rajiv Tulsyan

(the technical reviewer) for his expert insights and invaluable suggestions

to make the content as authentic as possible.

Murlimohan Kanagala has been a close friend for almost three

decades. Frequent constructive interactions with him have always been

immensely helpful in my journey as a developer, author, and educator. I

take this opportunity to acknowledge his support.

Treading an offbeat career path is never easy, unless you have a strong

support system of friends and family. I can't resist thanking my wife,

Jayashree, for being with me through the good and bad times.

Finally, sincere thanks from the bottom of my heart to my students,

colleagues, and collaborators.

xix

Introduction

Django is by far the most preferred Python framework for developing

data-driven web applications. Over the period, it has evolved to become a

powerful full-stack framework, growing and expanding its capabilities for

building asynchronous solutions, APIs, and real-time applications.

This book aims to equip the reader with the core concepts of Django

and to highlight new facets and best practices of web application

development with Modern Django. It emphasizes features such as

Channels for the implementation of the WebSocket protocol, DRF for

building REST APIs, using Graphene and Strawberry for GraphQL APIs,

and developing a frontend app with React JS.

 How This Book Is Arranged

This book comprises ten chapters. They are organized into two

distinct parts.

The first part deals with the basics of Django development, describing

the MVT architecture of Django with a lot of practical, real-world

examples.

Chapter 1 (Django Basics) sets the ball rolling by explaining the

concepts of web development. It introduces Python's asyncio module for

asynchronous processing and gives an overview of the Django framework.

Chapter 2 (Django: First Steps) guides you through the installation of

Django and creating your first Django application. It also gives a detailed

explanation of Django's Admin interface.

xx

Chapter 3 (Django ORM) deals with an important aspect of Django's

MVT architecture – models. You will learn how to use Django Shell, model

fields, and their types and the relationships.

Chapter 4 (Django Templates) covers the View component of

Django's architecture. You will learn about various template tags, different

types of views, and the static assets.

Chapter 5 (Django: Using Databases) is aimed at enabling you to

work with a wider range of databases. You will use SQLAlchemy ORM and

different libraries that let you use MongoDB as a backend to your Django

application.

In the second part, more advanced features of Django and various

apps in the Django ecosystem are discussed.

Chapter 6 (Advanced Django) will cover features such as messaging,

authentication, and security. It also discusses how to build and include

reusable apps such as the Django Debug Toolbar.

Chapter 7 (REST API with Django) helps you to explore the

powerful features of Django REST Framework to build robust REST APIs

with Django.

Chapter 8 (GraphQL with Django) explains the basics of GraphQL

protocol and discusses how to use Graphene and Strawberry packages for

building GraphQL API with Django.

Chapter 9 (WebSockets with Django) takes a detailed look at the

WebSocket protocol and its implementation in Django with the Django

Channels app.

Chapter 10 (ReactJS with Django) teaches you to use ReactJS

to build frontend clients for your Django-based REST, GraphQL, and

WebSocket APIs.

Thus, this book, Modern Django Web Development, will be a

comprehensive guide that covers all the aspects required for creating

successful and easy-to-use Django web applications.

INTRODUCTION

1© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_1

CHAPTER 1

Django Basics

 Introduction

Even after more than a decade and a half since the release of its earliest

version, Django is still the most popular web framework of Python

developers. The enduring relevance of Django can be attributed to

its continuing evolution by incorporating modern trends in the web

development technology. The latest version of Django (Django 5.0),

released in December 2023, also includes a number of new features that

enhance Django’s versatility, scalability, and maturity and provide a

cleaner architecture.

Before embarking upon our journey to learn to develop Modern

Django-based web applications, let us refresh some of the fundamental

concepts of web development. This chapter covers the following topics:

• Fundamentals of HTTP

• HTTP methods

• CGI

• WSGI

• wsgiref package

https://doi.org/10.1007/979-8-8688-1472-3_1#DOI

2

• What is a web framework?

• MVC vs. MVT

• Asynchronous processing

• ASGI

• Overview of Django

 Fundamentals of HTTP

Let us start with HTTP (Hypertext Transfer Protocol), since it is the

backbone of any data exchange over the World Wide Web. It is an

application layer protocol built on top of a TCP connection. The HTTP

follows a client-server communication model, wherein an HTTP client

(generally a web browser) opens a connection with the server and initiates

a request for a certain resource to be served to it.

The web application hosted on the HTTP server accepts the request,

processes it, and sends back an appropriate response. The web application

interacts with a database and may use certain static resources such as

images and documents to formulate the response.

On receiving the server’s response, it is rendered by the client, and the

connection it has opened is either used for further requests or it is closed.

Thus, the request-response cycle, as depicted in Figure 1-1, drives the

HTTP communication.

CHAPTER 1 DJANGO BASICS

3

Figure 1-1. Request-response cycle

Apart from the metadata about the identity of the client (such as the

IP address, the language, the user agent, etc.), the HTTP request has two

important constituents: the URI of the required resource on the server and

the action to be performed on the resource expressed in the form of HTTP

verbs like GET, POST, PUT, DELETE, etc. We shall learn more about them

in the next section.

The HTTP response, on the other hand, includes either the requested

resource or an error message, along with a status code indicative of the fate

of the request (whether successfully processed, required resource couldn’t

be found, request declined by the server, etc.)

HTTP is a stateless protocol, which means that the HTTP server

doesn’t hold on to any identity of the client it had requested to connect.

However, techniques such as cookies and sessions help the developer to

provide an enhanced user experience.

CHAPTER 1 DJANGO BASICS

4

 HTTP Methods

An aspect of the HTTP request that a web application developer has to

deal with the most is the HTTP methods (also called verbs), as it indicates

the action the application must take on the request data. In a typical web

application, requests with the POST, GET, PUT, and DELETE methods are

processed. These methods ask a new resource to be created, retrieve one

or more resources, modify the contents of resources, and remove specified

resources from the server, respectively.

 POST Method

An HTTP request with the POST verb indicates that the client wants a new

resource to be created on the server. Obviously, it will need certain data

to form the said resource object. Usually, the request body is populated

with the data filled in an HTML form. In other words, the client uses an

HTML form with its method attribute set to POST. On successful creation

of a new resource, the server responds by sending a message with 201

status code.

 GET Method

Every HTTP request is a GET request by default. It expects the server to

render one or more resources in its HTTP response. The server intimates

the content type (plain, HTML, media, JSON, etc.) along with the success

status code (200 OK). In case of failure to process the request, the status

code is 400 (Bad Request) or 404 (Not Found).

CHAPTER 1 DJANGO BASICS

5

 PUT Method

Often, the client requests an existing resource on the server to be modified,

attaching the updated data. The PUT verb conveys this intention to the

server. Again, the server responds with a status code (200 OK) for success

or 404 (Not Found) for failure.

 DELETE Method

The client’s request to remove one or more resources altogether from the

server comes with the DELETE verb. The possible status codes are 200

OK for successful processing of the request and 404 Not Found in case of

failure.

It is important to know about two characteristics of the HTTP methods.

They are idempotency and safety.

The HTTP method is said to be idempotent if making several identical

requests has the same effect on the server as making a single request.

Only the POST method is not idempotent, as sending a POST request

again creates another resource. All others (GET, PUT, and DELETE) are

idempotent.

The safety of an HTTP method refers to whether or not it alters the

state of the server. In this respect, the GET method is safe, as it only

performs retrieval. The PUT and DELETE methods are idempotent but

unsafe. The POST method is neither idempotent nor safe.

HTTP defines a few additional request methods as well – such as

PATCH, HEAD, OPTIONS, TRACE, and CONNECT. However, they are

very rarely employed in a typical web application; hence, they find just a

passing mention here.

CHAPTER 1 DJANGO BASICS

6

 CGI

While the World Wide Web (WWW) in its early stages was just a collection

of static web pages, soon various technologies came about to make it

more dynamic and interactive. CGI (Common Gateway Interface) was

one of the earliest tools in this direction. The CGI is a set of standards

recommended for an HTTP server software. Programs in languages such

as C/C++, PHP, Python, and Perl are stored on the server and executed

on the client’s request. These programs, called CGI scripts, generate the

output in HTML format, which the server sends as a response to the client.

The use of Python for web development was primarily as CGI.

A simple Python CGI script served to the browser client is shown in

Figure 1-2.

Figure 1-2. Python as CGI script

However, the world quickly moved away from CGI because of its

major drawback that it treats each connection request as a new process,

consuming a large memory and thereby resulting in poor performance.

One could achieve better results with the mod_python extension

installed on the Apache web server. However, with many Python-based web

frameworks coming up, along with many web server platforms in addition

to Apache (IIS, Nginx, lighttpd, etc.), the need for a simple and a uniform

interface between Python applications and the web software was felt.

CHAPTER 1 DJANGO BASICS

7

Having a standard interface makes it easy to use an application that supports

WSGI with a number of different web servers. This thought led the Python

community to the proposal of WSGI.

 WSGI

The process of having a standardized interface in place for web servers

and Python-based web applications started with raising a PEP – which

stands for Python Enhancement Proposal – bearing a number 333 in

the year 2003 (and later updated by PEP 3333 in 2010). This proposal is

known as WSGI (Web Server Gateway Interface) and recommends a

set of specifications for the web servers and web application frameworks

for Python.

In a typical web application, there is a server, a certain middleware

object, and the web application itself. As per WSGI specifications, the

workflow between these components should be as follows.

As a request from the HTTP client (web browser) is received, the

WSGI-enabled server invokes a WSGI application object by passing two

arguments to it. These arguments are

environ: A dictionary-like object that includes key-

value pairs corresponding to different server and

environment variables and their values.

start_response: The application object invokes this

callback function to begin the HTTP response of the

server, with appropriate status codes and response

headers.

The WSGI application object may be a function, a method, or a callable

object. It must return an iterator consisting of a single byte string.

CHAPTER 1 DJANGO BASICS

8

The following Python function (Listing 1-1) acts as a simple WSGI

application that returns a Hello World string as the response.

Listing 1-1. WSGI Hello World

def wsgiapp(environ, start_response):

 """Basic WSGI application object"""

 status = '200 OK'

 response_headers = [('Content-type', 'text/plain')]

 start_response(status, response_headers)

 return ['Hello world!\n']

Figure 1-3 shows the schematics of a WSGI architecture.

Figure 1-3. WSGI

 wsgiref Package

To help Python web developers to add WSGI support to a web server, the

Python’s standard library comes with a reference implementation of WSGI

specifications. The wsgiref package has been a part of the standard library

since Python’s version 2.5 onward.

CHAPTER 1 DJANGO BASICS

9

The wsgiref.simple_server module is a handy implementation of a

threaded HTTP server that serves WSGI applications on a given host and

a port. The make_server() method of the simple_server class returns an

instance of WSGI server.

wsgiref.simple_server.make_server(host, port, app)

You need to call the serve_forever() method of the server object so

that it starts listening to the incoming requests. This module also has a

demo_app() function. It is a WSGI application object that, when invoked,

prints a Hello World message, along with the list of environment variables.

Save the following Python code (Listing 1-2) as main.py and run it to

serve the demo_app on port 8000 of the localhost.

Listing 1-2. WSGI demo_app

from wsgiref.simple_server import make_server, demo_app

server = make_server('', 8000, demo_app)

server.serve_forever()

Open a new window of your favorite browser and use http://

localhost:8000 as the URL. The browser displays the Hello World text,

followed by a long list of environment variables.

Hello world!

ALLUSERSPROFILE = 'C:\\ProgramData'

APPDATA = 'C:\\Users\\user\\AppData\\Roaming'

CHOCOLATEYINSTALL = 'C:\\ProgramData\\chocolatey'

CHOCOLATEYLASTPATHUPDATE = '133449782501759075'

COMMONPROGRAMFILES = 'C:\\Program Files\\Common Files'

COMMONPROGRAMFILES(X86) = 'C:\\Program Files (x86)\\

Common Files'

COMMONPROGRAMW6432 = 'C:\\Program Files\\Common Files'

COMPUTERNAME = 'GNVBGL3'

CHAPTER 1 DJANGO BASICS

10

COMSPEC = 'C:\\WINDOWS\\system32\\cmd.exe'

CONTENT_LENGTH = ''

CONTENT_TYPE = 'text/plain'

DRIVERDATA = 'C:\\Windows\\System32\\Drivers\\DriverData'

EFC_14456 = '1'

GATEWAY_INTERFACE = 'CGI/1.1'

HOME = 'C:\\Users\\user'

HOMEDRIVE = 'C:'

HOMEPATH = '\\Users\\user'

. . .

. . .

Let us use our own Hello World app instead of the pre-installed demo_

app. Save and run the following code (Listing 1-3) as main.py.

Listing 1-3. Hello World WSGI

from wsgiref.simple_server import make_server

def wsgiapp(environ, start_response):

 host=environ.get('HTTP_HOST')

 start_response("200 OK", [("Content-type", "text/html")])

 ret = [("<h2>Hello World App on WSGI Server Running at

:{}</h2>".format((host)).encode("utf-8"))]

 return ret

server = make_server('localhost', 8000, wsgiapp)

server.serve_forever()

The details of the host name and the port number of the web server are

read from the HTTP_HOST header available in environ object. The web

browser shows the output as shown in Figure 1-4 when it visits the URL

http://localhost:8000.

CHAPTER 1 DJANGO BASICS

11

Figure 1-4. WSGI app

Apart from the simple_server, the wsgiref package also provides

a set of utilities for handling WSGI environment variables and response

headers. It also includes a validation tool, static type checkers, and the

handler classes for implementing WSGI servers and gateways.

You can extend the functionality of the WSGI application beyond

merely displaying a Hello World message, such as presenting web forms

for the user to submit the response, performing database operations

based on the input data, and rendering well-formatted results to the

user. However, building these features in a raw Python code will be

cumbersome, and what is more, with increasing complexity, the solution

will be hit with maintenance and scalability issues.

This is where the web frameworks (also called web application

frameworks) come into the picture. A Python developer has a number

of web frameworks to choose from so as to build a robust and scalable

application that also saves on development time. Django is one of the

most widely used frameworks. Let us first try to understand in brief how a

framework works.

 What Is a Web Framework?

In its most generic meaning, the term “framework” stands for a conceptual

structure consisting of objectives, rules, and constraints that acts as a

guide to build a certain product or solve a given problem. In the context

of application software development, a framework is a set of libraries that

CHAPTER 1 DJANGO BASICS

12

provide a generic functionality needed for a certain type of application. It

also performs most of the frequently needed low-level tasks and presents

a basic working template application, in which the developer can include

additional functionality to fine-tune to build the software that fulfills the

requirements.

Thus, a software framework is more of an abstract template or a

skeleton of all the necessary building blocks of a certain application. The

control flow of the application is already pre-decided. The developer only

has to plug in the business logic into the blocks. Hence, it results in rapid

and scalable development.

Web application framework is one of the types of software application

frameworks, the others being

• GUI frameworks

• Game development frameworks

• Testing frameworks

• Machine learning frameworks

• Scientific computing frameworks, etc.

A web application development also involves building its ergonomic

frontend, with HTML, CSS, and JavaScript technologies. Frontend

frameworks (also called client-side frameworks) encapsulate these

technologies to facilitate rapid UI development. React and Angular

are popular examples of frontend frameworks. The server-side

frameworks, on the other hand, mainly deal with the application logic

and the database interaction. The term “web framework” generally

refers to the server-side or backend frameworks such as Django.

CHAPTER 1 DJANGO BASICS

13

As mentioned earlier, one can, of course, develop a web-based

application without using a framework (such as Django), but the network-

related operations involved (such as request handling, state management,

etc.) have to be explicitly coded, and it involves a lot of effort, which can

be substantially more than the actual application logic. A web application

framework, on the other hand, lets the developer concentrate on the

application functionality by providing a standard platform to build and

deploy the application. Thus, a web framework facilitates rapid application

development.

The features offered by a web application framework may vary

depending on the scope and the nature of its target application. Some

frameworks are called full stack frameworks. These frameworks are

equipped with all the tools required to develop a fairly comprehensive

application. The term “Batteries Included” is often used to describe them.

Django, the subject matter of this book, is a full stack framework. The

other category is microframeworks. They are minimalistic and lightweight

in nature, with only the essential features. You can, of course, plug in

additional libraries to enhance the scope of the application.

Some of the common tasks handled by a typical web framework are

• User management: An interface that handles user

registration, verifies their identity, and manages roles

and privileges.

• URL mapping: Modern web apps serve their resources

to their users based on the composition of the URL

requested by them. One of the important tasks of a

framework is to map request URLs to specific resources

or views to structure the application’s code.

• File uploads: Most web apps let their users upload

images, documents, and other media on the server. The

frameworks handle this type of task very seamlessly.

CHAPTER 1 DJANGO BASICS

14

• Database interaction: Web applications are invariably

data-driven. The framework facilitates interaction with

a backend database and performs CRUD operations as

and when needed.

• API services: This feature allows other applications

or services to interact with the application’s data and

functionality in a controlled manner.

 MVC vs. MVT

The Model-View-Controller (MVC) is a popular software design pattern

that aims to divide application logic into three interconnected layers.

These layers in the MVC approach have clearly defined roles as follows:

Controller: The user requests are intercepted by the

controller. It coordinates with the View layer and the

Model layer to send the appropriate response back

to the client.

Model: The model is responsible for data

definitions, processing logic, and interaction with

the backend database.

View: The view is the presentation layer of the

application. It takes care of the placement and

formatting of the result and sends it to the client as

the application’s response.

Figure 1-5 shows the MVC architecture.

CHAPTER 1 DJANGO BASICS

15

Figure 1-5. MVC architecture

Although the MVC pattern is traditionally used in desktop GUI

development, many web application frameworks also employ this pattern.

The MVT (Model-View-Template) pattern is a slight variation of

MVC. While the Model layer in MVT has a similar role to play as in MVC,

the View layer in MVT is in fact the one that undertakes the processing

logic, and the Template is the presentation layer, performing the role of

View in MVC.

Django adapts the MVT approach. In addition to the Model, View,

and Template, there’s another important stage in Django’s architecture.

It is called URL dispatcher. In fact, the URL dispatcher mechanism is

equivalent to Controller in the MVC architecture. The interaction between

components of the MVT pattern is depicted in Figure 1-6.

Figure 1-6. MVT pattern

CHAPTER 1 DJANGO BASICS

16

When the server receives a request in the form of client URL, the

dispatcher matches its pattern with the predefined patterns and routes the

flow of the application toward its associated view.

 Asynchronous Processing

Early versions of Django (before Django version 3.1) supported a

synchronous execution, which is implemented by WSGI-compliant web

servers, such as Apache. Since then, Django has incorporated support

for writing asynchronous views. Django applications can now perform

nonblocking IO operations and concurrent processing. This coincided

with the induction of the asyncio module in Python’s standard library.

As against in a multithreading, where the main thread opens multiple

threads of operation and the CPU coordinates their execution by a certain

scheduling algorithm, in the asynchronous approach, only a single thread

runs but it has the ability to move on to a next task while the current task is

being processed.

In asynchronous processing, an asynchronous function voluntarily

yields to another function when it reaches an event or a condition so that

by the time the result from the other function is obtained, the original

function can attend some other operations.

Asynchronous processing is done over a single thread, unlike in a

multithreaded process. It is called cooperative multitasking, as its function

pauses its execution and relinquishes control to other functions. It

improves the overall performance by optimizing the system resources.

 asyncio Module

The two newly added keywords – async and await – and the induction of

the asyncio module in the standard library brought the asynchronous

support to Python. Normally, when a function is called, it blocks the

CHAPTER 1 DJANGO BASICS

17

execution till its execution is completed. To define a nonblocking

function, it is defined with the async keyword before the def keyword. The

asynchronous functions are called coroutines.

While a normal Python function is defined as

def syncHello():

 print ("Hello World")

the coroutine (asynchronous function) is defined as

async def asyncHello():

 print ("Hello World")

When prefixed with the async keyword, it returns a coroutine object

and is not invoked like a normal Python function. Instead, it is passed

as an argument to the run() function (refer to Listing 1-4) defined in the

asyncio module.

Listing 1-4. Coroutine

import asyncio

async def asyncHello():

 print ("Hello World")

asyncio.run(asyncHello())

The coroutine so defined is an awaitable function. When one coroutine

is called from another with the await keyword, the first function pauses its

execution and yields to the other, till the other completes its run.

The following Python code (Listing 1-5) has two coroutines. The

asyncHello() function sleeps for two seconds before printing the Hello

World message. Note that the sleep() function in the asyncio module is

also an awaitable function. The main() coroutine repeatedly pauses every

time the asyncHello() coroutine is invoked.

CHAPTER 1 DJANGO BASICS

18

Listing 1-5. Async Hello World

import asyncio

import time

async def asyncHello():

 await asyncio.sleep(2)

 print("\tHello World")

async def main():

 for i in range(1, 4):

 print ("Iteration:", i)

 print(f"\tstarted at {time.strftime('%X')}")

 await asyncHello()

 print(f"\tfinished at {time.strftime('%X')}")

asyncio.run(main())

The output shows how cooperative multitasking takes place between

the two coroutines.

Iteration: 1

 started at 00:02:11

 Hello World

 finished at 00:02:13

Iteration: 2

 started at 00:02:13

 Hello World

 finished at 00:02:15

Iteration: 3

 started at 00:02:15

 Hello World

 finished at 00:02:17

CHAPTER 1 DJANGO BASICS

19

 ASGI

The classical WSGI interface is not suitable for modern web protocols such

as WebSocket. To take advantage of the async capabilities of Python (added

since version 3.5 onward), a new set of specifications have been developed.

This is called Asynchronous Server Gateway Interface (ASGI). The

asgiref module is a reference implementation of ASGI. It is not a part of

Python’s standard library and hence needs to be installed manually. Also,

the asgiref module doesn’t come with a development server (the wsgiref

module has an HTTP server in the form of simple_server object). Hence,

we also need to install an ASGI server module such as Uvicorn or Daphne.

To install asgiref and Uvicorn, use the PIP utility:

pip3 install asgiref

pip3 install uvicorn

The ASGI application is an asynchronous callable (coroutine) that

takes three parameters: send, receive, and scope.

The send and receive parameters are asynchronous callables that

enable the application to send and receive event messages to and from

the client, respectively. The scope parameter is a dict containing details

of a specific connection provided by the server, such as the protocol,

headers, etc.

The minimal ASGI Hello World application to be run with the Uvicorn

server is given below. Save the following code (Listing 1-6) as main.py.

Listing 1-6. ASGI Hello World

import uvicorn

async def app(scope, receive, send):

 await send({

 'type': 'http.response.start',

 'status': 200,

CHAPTER 1 DJANGO BASICS

20

 'headers': [

 [b'content-type', b'text/html'],

],

 })

 await send({

 'type': 'http.response.body',

 'body': b'<h2>Hello World App on ASGI Server</h2>',

 })

if __name__ == "__main__":

 uvicorn.run("main:app", port=5000, log_level="info")

Run the above Python script and visit http://localhost:5000/ to get the

ASGI app running in the browser (Figure 1-7).

Figure 1-7. ASGI app

For Django version 3.1 and above, the asgiref library is a core

dependency. It makes Django add ASGI features like asynchronous

workflows and nonblocking I/O operations in the application to achieve

better performance and scalability. One of the main features of asgiref

is the SyncToAsync wrapper, which allows the synchronous code in

asynchronous context without any rewrite. ASGI is thus a superset of WSGI

specifications.

Modern Django apps such as Channels and Django REST Framework

rely heavily on ASGI for handling WebSocket connections, asynchronous

background tasks, etc.

CHAPTER 1 DJANGO BASICS

21

 Overview of Django

The preceding sections of this chapter presented a brief review of some

important foundational aspects that would help the learner understand

the concepts, the design philosophy, and the architecture of the Django

framework with more clarity. It is now time to know more about the

Django framework itself.

As mentioned earlier, Django has been around for close to two

decades. It is the most preferred tool for Python web developers. First

developed in 2005 by Adrian Holovaty and Simon Willison, the Django

project is being maintained by the Django Software Foundation. In the

plethora of Python web frameworks, Django stands out because of the

following features.

 Batteries Included

“The web framework for perfectionists with deadlines” – this is the

tagline of Django. Django is considered to be a full-stack web application

framework. The Django package is bundled with all the necessary

components required to build a full-fledged web application. Django has

its own templating system (Django Template Language), object relation

model (Django ORM), and regex-based URL dispatcher. Unlike the other

microframeworks, you don’t need to install any other libraries for these

core activities.

 Utility Apps

The Django package is also bundled with a number of applications for

general-purpose consumption. The contrib package provides a robust

admin and authentication system, built-in security mechanism to prevent

CSRF and SQL injection attacks, and much more.

CHAPTER 1 DJANGO BASICS

22

 Scalability

Django uses a “shared-nothing” architecture. It is designed to

accommodate additional hardware – such as database servers, caching

servers, or web/application servers at any point of the lifetime of a web

application. It separates the components such as its database layer and

application layer very cleanly.

 Documentation and Support

For an open source project, Django has very excellent and comprehensive

documentation. Besides, Django has a large and active community of

developers. A lot of resources such as books, tutorials, articles, and forums

are available for an aspiring Django developer. The significant user base

of Django includes some well-known organizations such as Instagram,

Mozilla, Disqus, etc.

It may be noted that Django is considered as an opinionated framework.

While this has certain advantages such as a cleaner and consistent code that

is easier to maintain, it has a steeper learning curve as compared to many

of the other frameworks. Also, it is not flexible enough to let the user choose

the tools other than those bundled with the Django package.

 Summary

This chapter aims to refresh some of the fundamental concepts of web

application and web frameworks. With specific reference to Python’s web

frameworks, the role of WSGI and ASGI has been explained in this chapter.

The stage is now set for us to explore the Django framework and the

associated tools in the Django ecosystem. In the next chapter, we shall

write our first Django application and also get acquainted with Django’s

admin interface.

CHAPTER 1 DJANGO BASICS

23© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_2

CHAPTER 2

Django: First Steps
As compared to some of the other, simpler Python-based web frameworks,

to get started with Django is a little difficult. This is mainly because

it follows a fairly rigid process of building an app. Django is also very

particular about the project structure and the nomenclature. Its extensive

features and the batteries included approach make Django an opinionated

framework, and hence, it has a steeper learning curve as compared

to others.

Precisely for this reason, it is important we spend enough time to

understand how different components of a Django app work and their

interplay. This chapter navigates you through the seemingly tricky

early stages.

This chapter explains the following topics:

• Install Django

• Set up the Django project

• Adding an app

• Define views

• Mapping a view to URL

• Serving web pages

• Django admin site

https://doi.org/10.1007/979-8-8688-1472-3_2#DOI

24

 Install Django

Django is an open source Python package. Obviously, you need to have

Python installed on your computer. In the case of Linux, most of the

distributions today come with Python3 bundled with them. However,

different versions of Django need specific versions of Python. For Django

versions 4.x and 5.x, the minimum Python version needed is Python 3.8. The

Ubuntu Desktop 22.04 LTS distribution, for example, comes with Python

3.10 preinstalled, which is fine for installing Django 4 as well as Django 5.

The Django 4.2.x series is the last to support Python 3.8 and 3.9 versions.

However, it is recommended that you use the latest release of each

Django series and the latest Python version. As of December 2023, Python

3.12.1 is the latest version, and Django 5.0.1 is the latest Django version.

In the case of Windows 10 or Windows 11, Python is not pre-installed.

So you need to download the installer of the latest version and run it.

(Make sure that the Python installation directory is added to the PATH

environment variable).

With this first step done, let us proceed to the installation of Django.

The preferred way of installing Django (as also any Python package)

from the official Python package repository is to use PIP utility. Python

also recommends using isolated environments (also called virtual

environments) rather than system-wide installation of packages. The venv

module facilitates creating and managing the virtual environment.

 Installation on Ubuntu

The PIP utility as well as the venv module are not a part of Python software

on Ubuntu distributions. Hence, it has to be installed with the help of

Ubuntu’s APT package manager. Use the following command in the

Ubuntu terminal:

sudo apt install python3-pip

CHAPTER 2 DJANGO: FIRST STEPS

25

To add venv to Python’s library, use the following command:

sudo apt install python3-venv

We shall now create a virtual environment and install Django in it. To

begin with, create a new directory workspace inside the user’s home. Enter

the directory and create a virtual environment with its name as djenv:

mkdir workspace

cd workspace

~/workspace$ python3 -m venv djenv

This will create another directory (djenv) inside the workspace. The

virtual environment will have the directory structure shown in Figure 2-1.

Figure 2-1. Python virtual environment

The bin directory contains a copy of Python executable, PIP utility, as

well as a script to activate the environment. Figure 2-2 shows the contents

of the bin directory.

CHAPTER 2 DJANGO: FIRST STEPS

26

Figure 2-2. Virtual environment scripts

Activate the virtual environment with the following command:

~/workspace$ source djenv/bin/activate

The name of the environment now appears on the left of the prompt.

(djenv) malhar@ubuntu:~/workspace$

Now we can install Django inside this virtual environment with the

following command:

(djenv) malhar@ubuntu:~workspace$ pip3 install django>4.2

The default Django version in the Ubuntu repository may not be the

latest one. Hence, we have asked the version greater than 4.2 (which is

5.0.1) to be installed.

Along with Django, certain other packages are also installed. The list of all

the packages in the environment is obtained by the pip freeze command.

(djenv) malhar@ubuntu:~/workspace$ pip3 freeze

asgiref==3.7.2

Django==5.0.1

sqlparse==0.4.4

typing_extensions==4.9.0

CHAPTER 2 DJANGO: FIRST STEPS

27

To double-check the correct installation of Django, start the Python

interpreter, import Django, and check its version.

(djenv) malhar@ubuntu:~/workspace$ python3

Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0]

on linux

Type "help", "copyright", "credits" or "license" for more

information.

>>> import django

>>> django.__version__

'5.0.1'

The installation adds a Django-admin command-line utility in the bin

folder of the virtual environment, as shown in the Figure 2-3.

Figure 2-3. django-admin utility

The django-admin utility has been provided to perform many

administrative tasks such as project creation and management, creating

the skeleton of a typical Django app, starting the Django development

server, and many more. We shall shortly use this utility for building our

first Django app.

CHAPTER 2 DJANGO: FIRST STEPS

28

 Installation on Windows

The procedure for installation of Django on Windows is almost similar. On

Windows, the Python executable and the utilities for package installation

(PIP) and activation of the virtual environment (activate.bat) are placed

in the scripts subfolder of the virtual environment folder (djenv).

Figure 2-4 displays the contents of the scripts directory.

Figure 2-4. Python virtual environment in Windows

To activate the virtual environment on Windows, run the following

command in the command prompt window (here it is assumed that the

virtual environment djenv is created inside the C:\workspace folder):

C:\workspace>djenv\scripts\activate

The name of the virtual environment appears on the left of the

command prompt. You can install Django with the same command as in

the case of Ubuntu.

(djenv) C:\workspace>pip3 install Django

CHAPTER 2 DJANGO: FIRST STEPS

29

 Set Up the Django Project

Django has been developed with the objective of providing a tool for

building a complex, robust, modular, and scalable web-based application.

An enterprise application may have multiple submodules (Django calls

them as apps), and they may be interacting with each other. They can

even share certain resources and parameters. A project in Django controls

the common features of its apps. It is essentially a high-level structure of

your entire application. A project is a hierarchical structure of folders and

files that holds all the essential components like database configuration,

Django-specific options, and application-specific settings.

As mentioned earlier, a command-line utility called django-admin

is made available along with the installation of Django. This utility helps

you perform different actions. The very first use of this utility is to create a

project structure. Django’s recommended way is to run the startproject

command with the django-admin utility.

In your OS terminal, ensure that you are in the workspace directory,

and run the following command to create a Django project with the name

firstproject:

(djenv) C:\workspace>django-admin startproject firstproject

This will create a file structure inside the workspace directory as shown

in Figure 2-5.

Figure 2-5. Django project structure

CHAPTER 2 DJANGO: FIRST STEPS

30

There are two folders named firstproject in the figure. The outer one

acts as the root of your project. The inner directory of the same name is a

Python package (as is evident by the fact that it has the __init__.py file).

Django auto-generates a file (settings.py) defining the default values of a

number of parameters such as installed apps, database configuration, URL

dispatcher, etc. We shall come to know more about different configuration

settings later in this chapter, and also as we go along. There are a few more

Python modules also in the inner project package folder:

settings.py: We have talked a little about this earlier.

Django creates this script with certain default values

of various parameters such as database connection,

URLCONF path, location of templates and static

assets, etc. You may want to add or modify the

settings as required.

urls.py: This module is called URLCONF. Django

uses this script to locate the view that matches with

the request URL. The urlpatterns of all the apps are

registered with the URLCONF of the project.

wsgi.py: This module uses the project’s settings and

returns a WSGI application object. Any WSGI-

compatible server can use this object to serve the

application.

asgi.py: From version 3.2 onward, Django supports

ASGI specifications. The module is the entry point

for ASGI-compatible web servers such as Uvicorn or

Daphne to serve your project.

Let us turn to the Python script in the top-level root folder – manage.

py file. Think of it as a local copy of the django-admin command-line

utility. All the administrative tasks (that django-admin can perform)

can also be done with the manage.py script. In fact, using manage.py is

CHAPTER 2 DJANGO: FIRST STEPS

31

more convenient especially if you are dealing with a single project. If the

application involves multiple Django projects, the django-admin utility is

more suited.

For now, we want to check whether the project we have just created

(firstproject) works. Use the manage.py script to start Django’s built-in

development server with the following command. Ensure that the current

directory of your command-line console (Command prompt in Windows,

or the terminal in Linux) is the top-level root project folder.

(djenv) C:\workspace\firstproject>python manage.py runserver

In the terminal, you should see an activity log similar to this:

System check identified no issues (0 silenced).

You have 18 unapplied migration(s). Your project may not work

properly until you apply the migrations for app(s): admin,

auth, contenttypes, sessions.

Run 'python manage.py migrate' to apply them.

February 02, 2024 - 23:40:27

Django version 5.0.1, using settings 'firstproject.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CTRL-BREAK.

Ignore the migrations-related warning for now, and note that

the server has started. Head over to your favorite browser, and enter the

URL http://127.0.0.1:8000/ and see if it shows the output as in the

Figure 2-6.

CHAPTER 2 DJANGO: FIRST STEPS

http://127.0.0.1:8000/

32

Figure 2-6. The Django server runs successfully

If everything goes well, you should see the above display. The caption

itself is self-explanatory.

The Django project can be served without the built-in Django

development server. Since Django is a WSGI-compatible framework, the

simple_server defined in the wsgiref package is capable of serving it. As

mentioned earlier, the wsgi.py module from the project’s Python package

returns a WSGI application object. The following code serves the Django

project as a pure WSGI application:

CHAPTER 2 DJANGO: FIRST STEPS

33

import firstproject.wsgi as ws

from wsgiref.simple_server import make_server

server = make_server('localhost', 8000, ws.application)

server.serve_forever()

To run a Django application in ASGI-compatible mode, we need an

ASGI web server, as it is not bundled with Python’s standard library. The

Daphne package is an ASGI server, optimized for Django’s asynchronous

features.

Let us install the Daphne package first.

(djenv) C:\workspace>pip3 install daphne

The asgi module in Django’s project package defines the ASGI

application object. Daphne has a simple command-line interface to

launch the server and serve the application:

(djenv) C:\workspace\firstproject>daphne firstproject.

asgi:application

With the project structure successfully created, we are now good to go

ahead and create a Django app in it.

 Django App

The Django project is a complete web application whose functionality may

have multiple submodules. In Django parlance, the submodules are called

apps. Thus, a Django project may have one or more apps. On the other

hand, an app may be a part of one or more projects. In that sense, a Django

app is an entirely stand-alone application capable of becoming a part of a

bigger project.

CHAPTER 2 DJANGO: FIRST STEPS

34

Think of an e-commerce website of a company dealing in electronic

products as an example of a Django project, wherein its various

components such as products, customers, and orders are handled by

individual apps. The project facilitates the transactions between the apps.

If built with its reusability in mind, any of the apps can be added to

another project. To extend the example, the product app can be included

in the e-learning marketplace website as well.

In the previous chapter, we learned that Django uses the MVT

approach. In fact, it is the app (not so much the project) that implements

the MVT architecture. The project primarily acts as the URL dispatcher, as

we shall come to know shortly.

A Django app is a Python package. The app package folder with some

auto-generated modules is created by the startapp command.

(djenv) C:\workspace\firstproject>python manage.py startapp

firstapp

This command is run while the current directory is the project root.

The app package is created alongside the project app, under the project

root directory, as in the Figure 2-7.

Figure 2-7. Django app structure

CHAPTER 2 DJANGO: FIRST STEPS

35

 Add an App

After the app folder with the above structure is created, it must be included

in the project. When we create a project with the startproject command,

the project’s default settings are stored in the settings.py module. Django

also installs certain utility apps such as the admin app, the session

management app, etc.; the list is available in the INSTALLED_APPS

settings. Open the settings.py file and include this app (firstapp) at the

end of the list.

Application definition

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'firstapp',

]

 Define Views

As mentioned earlier, the View layer in Django’s MVT architecture is where

the processing logic is defined. A view is a Python function or a class that

has been assigned the job to process the incoming request and formulate

an appropriate response to be returned to the client. The startapp

command auto-generates a views.py module, which is more or less empty

(there is a solitary import statement) to begin with.

Let us plan to add two view functions. We want that the index()

function should be invoked when the user’s request URL is http://

localhost:8000/firstapp/, and it should return a Hello World message.

CHAPTER 2 DJANGO: FIRST STEPS

36

The other view function about() should render a message such as “Know

more about this app”, in response to the URL http://localhost:8000/

firstapp/about/.

The Django server provides the HttpRequest object as an argument to

a view function, which returns an object of HttpResponse class (defined in

the django.http module).

Add the functions shown in Listing 2-1 in the views.py file.

Listing 2-1. views.py

from django.http import HttpResponse

def index(request):

 return HttpResponse("<h2>Hello, World. This is the home

page of FirstApp.</h2>")

def about(request):

 return HttpResponse("<h2>Know more about FirstApp.</h2>")

 Define urlpatterns

The URL pattern is a mapping of a view to its desired request

URL. Typically, the urlpatterns are defined in a urls.py module in the app

package folder. This file doesn’t exist by default, so we need to create a

new one with this name. The path() function defined in the django.urls

module creates the association of a URL route with the view function.

path(route, view, kwargs=None, name=None)

The route argument is a string representing the URL pattern. The string

contains the tailing path_info part of the URL, excluding the hostname and the

prefix. For example, in the URL http://localhost:8000/firstapp/about/, firstapp

is the prefix after the hostname; hence, the route argument is “about/”.

The view argument is the name of the function in the views.py module.

The “about/” route is to be mapped to the views.about() function.

CHAPTER 2 DJANGO: FIRST STEPS

37

The name argument, though optional, should be provided as it proves

useful in forming named urlpatterns (we shall learn more about this

feature later).

Create a new Python module named urls.py and save the code shown

in Listing 2-2 in it.

Listing 2-2. urls.py (in app)

from django.urls import path

from . import views

urlpatterns = [

 path("", views.index, name="index"),

 path("about/", views.about, name="about"),

]

 Update URLCONF

The urls.py module in the project package is referred to as URLCONF. It

includes the urlpatterns of all the installed apps in the project. When a

client request is received, Django locates a matching view function from

the registered patterns. We need to include the urlpatterns of the app

(firstapp/urls.py) in the URLCONF of the project (firstproject/urls.

py). The include() function from the django.urls module does this job.

Listing 2-3 shows the updated urlpatterns list.

Listing 2-3. urls.py (in project)

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path("firstapp/", include("firstapp.urls")),

 path('admin/', admin.site.urls),

]

CHAPTER 2 DJANGO: FIRST STEPS

38

The 'admin/' route has been registered in the list of patterns by default.

We shall discuss this later in this chapter.

So we have done everything that is required to serve our app. Start the

Django server, and visit http://localhost:8000/firstapp/ to get the Hello

World message displayed in the browser.

Change the URL to http://localhost:8000/firstapp/about/, and the

browser displays the output as shown in Figure 2-8.

Figure 2-8. Django app route

 Path Parameters

We know that the Django server provides the HttpRequest object as a

mandatory argument to a view function. However, you can declare a view

with additional parameters that can be fetched from the urlpatterns.

Let us define a user() function as a view in our app, with name as a

string parameter. The function inserts the received string in the Welcome

message to be returned as the response.

def user(request, name):

 return HttpResponse(f"<h2>Hello, {name}. Welcome to the

home page of FirstApp.</h2>")

This function needs to be mapped with a URL route user/ in the app’s

URL pattern list. This route needs to have a variable part corresponding

to the parameter of the view function and must be put inside angular

brackets < and > for Django to capture the value and pass to the function.

CHAPTER 2 DJANGO: FIRST STEPS

39

In this case, as the URL route should be user/<name>/ and mapped

with the views.user function, add the following pattern (shown in bold) in

the app’s URL pattern list:

from django.urls import path

from . import views

urlpatterns = [

 path("", views.index, name="index"),

 path("about/", views.about, name="about"),

 path("user/<name>/", views.user, name="user"),

]

Make the changes in both the modules – views.py and urls.py – and

start the server. Use the URL http://localhost:8000/firstapp/user/Kevin

and check if the response in the browser is as in the Figure 2-9.

Figure 2-9. Path parameters in URL

At times, you may need to pass the path parameters of some other

types. By default, the parameter inside the angular brackets is of str type.

For other types, the appropriate path converter prefix must be included.

For example, it should be <int:userID> to let Django interpret the

parameter as an integer.

Here’s the list of the path converters recognized by Django:

str: Matches any non-empty string. In the above

example, we could have written <str:name>;

however, it is the default if a converter isn’t included

in the expression.

CHAPTER 2 DJANGO: FIRST STEPS

40

int: To read an integer parameter from the URL,

use int: inside the angular brackets, for example,

<int:userID>. Any non-negative integer may be

present.

slug: A slug is a string that can only include

characters, numbers, dashes, and underscores.

In this case, a string consisting of ASCII letters

or numbers plus the hyphen and underscore

characters that identifies a particular page on a

website. For example, <slug:post_title>.

uuid: This converter matches a formatted UUID. As

a convention, to prevent multiple URLs from

mapping to the same page, dashes must be included

and letters must be lowercase.

path: This converter matches any non-empty string,

including the path separator, ‘/’, so as to allow you

to match against a complete URL path rather than a

segment of a URL path as with str.

In the forthcoming chapters, we shall be using these path converters in

the formation of urlpatterns.

 Serving Web Pages

The view function returns its response in the form of an HttpResponse

object, with a string as its content. In addition, other HTTP headers may

be included in the constructor. By default, the Content_Type header is

text/html. Hence, any HTML tags included in the response string will be

accordingly parsed by the browser. You can, of course, set it to any other

type, such as application/json if you wish to formulate a JSON response

(usually in the case of APIs).

CHAPTER 2 DJANGO: FIRST STEPS

41

Instead of passing raw HTML strings, Django allows to serve an HTML

page as the response. A very handy render() function, defined in the

django.shortcuts module, is used for the purpose. Django can render a

static web page as well as a web page in which a dynamic content can be

inserted, such a page being called as a template.

To render a web page, the Django server checks if the page is available

in any of the directories in the DIRS attribute of the TEMPLATES setting.

Conventionally, the template folder under the project root folder is the

place where templates are put. The project root folder is referred to by

BASE_DIR.

Create a directory named templates under the project root, locate the

TEMPLATES section in the settings.py file, and set the DIRS attribute as

shown in Listing 2-4.

Listing 2-4. settings.py (TEMPLATES section)

TEMPLATES = [

 {

 'BACKEND': 'django.template.backends.django.

DjangoTemplates',

 'DIRS': [BASE_DIR/'templates'],

 'APP_DIRS': True,

 'OPTIONS': {

 'context_processors': [

 'django.template.context_processors.debug',

 'django.template.context_processors.request',

 'django.contrib.auth.context_processors.auth',

 'django.contrib.messages.context_processors.

messages',

],

 },

 },

]

CHAPTER 2 DJANGO: FIRST STEPS

42

Inside the templates folder, save the HTML script shown in Listing 2-5

as index.html.

Listing 2-5. index.html

<html>

<body>

<h2>Hello, World. This is the home page of FirstApp.</h2>

</body>

</html>

To render this page as the response of index view, modify its definition

in views.html as in Listing 2-6.

Listing 2-6. views.py

from django.shortcuts import render

def index(request):

 return render(request, 'index.html')

Run the server again and visit the index route in your browser. Now,

the contents of index.html are displayed.

In the above code, the render() function is called. The first argument

passed to this function is the HttpRequest object that the view receives

from the server. The contents of the HTML page (the second argument) is

returned as the HttpResponse.

The render() function can also have a third argument called context.

It is a dictionary object, whose values are inserted in the template tags

placed inside the HTML code. Django has an elaborate template system,

with which data from sources such as databases can be inserted to

generate dynamic web pages. We have a complete chapter on all the

powerful features of Django Template Language, later in this book.

CHAPTER 2 DJANGO: FIRST STEPS

43

 Admin Site

A fully customizable, automatic admin interface is one of the most

powerful features of Django. However, it should be only used as an

organization’s internal management tool. The admin app is automatically

added to the project as a result of the startproject command.

The admin interface depends on the django.contrib.admin app.

You’ll find it in the INSTALLED_APPS section of the settings.py (along

with its dependencies).

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

]

The startproject template also includes the admin app in the

URLCONF of the project. The default code in the urls.py file in the project

package folder is shown in Listing 2-7.

Listing 2-7. urls.py (in project)

from django.contrib import admin

from django.urls import path

urlpatterns = [

 path('admin/', admin.site.urls),

]

CHAPTER 2 DJANGO: FIRST STEPS

44

The pre-installed apps use database tables to store and retrieve

information. We need to create the database tables necessary for these

apps. Run the migrate command to use the models in these apps and

build their respective table structure. We shall learn more about migration

in a subsequent chapter.

Django uses a SQLite database by default. You’ll find db.sqlite3 created

in the project root folder. Django can be configured to use any other type of

database (such as MySQL), for which we will have to modify the database

configuration in the project’s setting module. For now, we shall stick to

SQLite database.

In fact, migrate is a django-admin command. However, we shall

execute it with the manage.py script as follows:

(djenv) D:\workspace\firstproject>python manage.py migrate

The console shows a log similar to the following:

Operations to perform:

 Apply all migrations: admin, auth, contenttypes, sessions

Running migrations:

 Applying contenttypes.0001_initial... OK

 Applying auth.0001_initial... OK

 Applying admin.0001_initial... OK

 . . .

 Applying sessions.0001_initial... OK

The required tables are thus created. You need at least one user to be

able to use the admin panel. A user is an object of the User class found

in the django.contrib.auth.models module. Use the createsuperuser

command as follows:

(djenv) C:\workspace\firstproject>python manage.py

createsuperuser

CHAPTER 2 DJANGO: FIRST STEPS

45

You will be asked to furnish the following details:

Username (leave blank to use 'mlath'): admin

Email address: admin@example.com

Password: ********

Password (again): ********

The password is too similar to the username.

This password is too short. It must contain at least 8

characters.

This password is too common.

Bypass password validation and create user anyway? [y/N]: y

Superuser created successfully.

Now, we can launch the Django development server and open the

admin site at the URL http://localhost:8000/admin/. Your browser should

display a login screen as in the Figure 2-10.

Figure 2-10. Login screen of the admin site

CHAPTER 2 DJANGO: FIRST STEPS

46

Enter the login credentials of the superuser we just created to get to the

home page of the admin site (refer to the Figure 2-11).

Figure 2-11. Home page of the admin site

To add a new user, click the + symbol in the Users row. An interface as

shown in the Figure 2-12 opens up. Enter username and password for the

new user.

CHAPTER 2 DJANGO: FIRST STEPS

47

Figure 2-12. Add a user

A user belongs to any of the following types:

superuser: A user object that can log into the

admin site and possesses permissions to add/

change/delete other users as well as perform CRUD

operations on all the models in the project, through

the admin interface itself.

staff: The User object has an is_staff property.

When this property is set to True, the user is able to

log in to the Django admin site. However, a staff user

doesn’t automatically get the permission to create,

CHAPTER 2 DJANGO: FIRST STEPS

48

read, update, and delete data in the Django admin;

it must be given explicitly. The superuser is a staff

user by default.

active: All users are marked as active by default.

However, a user may be marked as inactive if

its authentication fails or has been banned for

some reasons. A normal active user (without staff

privilege) is not authorized to use the admin site.

Check/uncheck the boxes as shown in Figure 2-13 to make the user a

superuser, staff, or just an active user.

Figure 2-13. User permissions

A superuser has all the privileges to add a new user, grant or revoke

permissions to other users, create and grant roles to a group of users, etc.

Django has a built-in Python shell that helps in performing the same

user management tasks with this command-line interface that we have

learned to perform with the help of the admin site.

To invoke the Python shell, use the following command:

python manage.py shell

Against the Python prompt, import the User class and call its

create_superuser() function. Give the username, email, and password

parameters.

CHAPTER 2 DJANGO: FIRST STEPS

49

>>> from django.contrib.auth.models import User

>>> usr=User.objects.create_superuser('manager', 'manager@abc.

com', 'pass123')

>>> usr.save()

With the create_user() function, create a normal user.

>>> from django.contrib.auth.models import User

>>> usr=User.objects.create_user('testusr', 'test@abc.com',

'pass123')

To enable logging in to the admin site with this newly created user, set

its is_staff property to True.

>>> usr.is_staff=True

>>> usr.save()

This shell inside the Django environment is an extremely useful tool

with the ability to execute Python code and interact with your project

directly. It may be used for different purposes such as testing models,

inspecting data in your database, and, in general, experimenting with

Python code within the context of your project.

We shall be dealing with the admin site later in this book when we

learn about authentication and authorization.

 Summary

This chapter explained how to build a basic Django project and an app.

In this chapter, we also learned how the admin interface of a Django site

works and how to create users with web as well as shell interface.

In the next chapter, we shall explore the Model layer of Django

architecture. We shall learn how to configure a database and perform

migrations.

CHAPTER 2 DJANGO: FIRST STEPS

51© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_3

CHAPTER 3

Django ORM
In the previous chapter, we discussed the View layer of the Django

application. We learned how to write views and how to map URL routes

to them. In this chapter, we shall learn about the Model layer – the second

component of Django’s MVT (Model, View, and Template) architecture.

Large, complex, and dynamic web-based applications are always data

driven. The application invariably uses a certain database backend for

data storage and retrieval. Instead of interacting with the database with

raw SQL queries, Django recommends handling the database through

an abstraction layer having Python objects called models. By the end

of this chapter, you will be able to write models, perform migrations to

build databases representing the models, and perform CRUD operations

through the model object.

In this chapter, the following topics will be covered:

• DB-API

• ORM

• Database configuration

• Model class

• Migrations

• Django admin shell

https://doi.org/10.1007/979-8-8688-1472-3_3#DOI

52

• CRUD operations

• Model field types

• Model relationships

 DB-API

The Python Database API (DB-API) is a collection of specifications

recommended to be implemented by the database access modules for

any relational database. Python modules acting as interface for respective

relational databases – such as mysqldb or mysqlclient for MySQL, psycopg

for PostgreSQL, etc. – use the same set of classes, objects, and functions as

defined in DB-API. The standard library bundled with Python distribution

includes the sqlite3 module, which is a reference implementation of DB-

API, and is meant to be used with the SQLite database.

SQLite is a lightweight, file-based, serverless database. Python’s

standard library readily provides built-in support for working with it

in the form of sqlite3 module. In fact, a Django project set up with the

startproject template is configured to use the SQLite database by

default.

To interact with a database, the first step is to establish a connection

and obtain a connection object.

import sqlite3

conn=sqlite3.connect("mydata.sqlite3")

Next, we need to obtain a cursor object that acts as a handle to the

database. The cursor object is responsible for executing all the SQL queries

that perform CREATE, RETRIEVE, UPDATE, and DELETE operations

(popularly known by the acronym CRUD).

cur=conn.cursor()

CHAPTER 3 DJANGO ORM

53

All we need to do now is call the execute() method of the cursor

object and pass a string representing a valid SQL query to it.

For example, the code in Listing 3-1 creates a Books table with a given

field structure in the mydata.sqlite3 database.

Listing 3-1. Create table

import sqlite3

conn=sqlite3.connect("mydata.sqlite3")

cur=conn.cursor()

qry='''

CREATE TABLE IF NOT EXISTS Books (

 id INTEGER (10) PRIMARY KEY,

 title STRING (50),

 author STRING (20),

 price INTEGER (10),

 publisher STRING (20)

);

'''

cur.execute(qry)

conn.close()

The database is created in the current working folder and can be

verified with any SQLite viewer app (Figure 3-1).

CHAPTER 3 DJANGO ORM

54

Figure 3-1. Table in SQLite

Let us also add a few test records in the Books table using the GUI

provided by the viewer app itself (refer to Figure 3-2).

Figure 3-2. Books table

This database can be easily accessed in a Django view function. We

need to pass a SELECT query to the execute() method of the cursor object

from the sqlite3 module.

CHAPTER 3 DJANGO ORM

55

Add a new function in the views.py module to fetch the records from

the Books table (refer to Listing 3-2). The resultset of the SELECT query is

rendered as the response to the client.

Listing 3-2. books view

import sqlite3

def books(request):

 conn=sqlite3.connect("db.sqlite3")

 cur=conn.cursor()

 qry = "SELECT * FROM Books"

 cur.execute(qry)

 books=cur.fetchall()

 return HttpResponse(str(books))

You also need to map this view to a URL route. This is done by

appending the following path() expression in the urlpatterns list of the

app. The new route is shown in bold letters in Listing 3-3.

Listing 3-3. Update urlpatterns

urlpatterns = [

 path("", views.index, name="index"),

 path("about/", views.about, name="about"),

 path("books/", views.books, name="books"),

]

You may also provide another view to fetch a specific record whose id

is captured from the URL route as a path parameter.

In the views.py module, add a new book() view, as shown in

Listing 3-4. It has two arguments; one of course is the request object. The

second argument is id, which Django provides by parsing the mapped

CHAPTER 3 DJANGO ORM

56

URL route. The SQL query is a prepared statement that substitutes the

value of id received from the URL dispatcher in the SELECT statement. The

record returned by the fetchone() method of the cursor is rendered as the

response.

Listing 3-4. book view

def book(request, id):

 conn=sqlite3.connect("db.sqlite3")

 cur=conn.cursor()

 qry = "SELECT * FROM Books WHERE id=?"

 cur.execute(qry, (id,))

 book=cur.fetchone()

 return HttpResponse(str(book))

This time, the URL route to be mapped with this view has a trailing

integer path parameter. Update the urlpatterns list in the urls.py

module as shown:

urlpatterns = [

 path("", views.index, name="index"),

 path("about/", views.about, name="about"),

 path("books/", views.books, name="books"),

 path("book/<int:id>/", views.book, name="book"),

]

These two view functions fetch one or all the records from the

table. Likewise, the other CRUD operations can be implemented easily.

It basically involves passing an appropriate SQL query string to the

execute() method.

However, we shall not pursue this approach of handling databases with

the DB-API functionality any further. Instead, we shall find how Django’s

preferred method of employing Object-Relational Mapper (ORM) for the

database interaction works.

CHAPTER 3 DJANGO ORM

57

 What Is ORM?

Working with the relational databases with the DB-API-compliant modules

has two issues. One of course, is that you as a Python developer should also be

proficient in the syntax and construction of various SQL queries. The second

issue is more about the programming paradigm mismatch between Python

and SQL. The nomenclature of type system in SQL is not at all similar to

Python. Apart from numeric and string types, other types have no equivalent

counterparts in Python. Python uses objects with attributes of different types.

SQL, on the other hand, doesn’t support object-oriented programming.

To elaborate this mismatch, consider the Python class definition in

Listing 3-5.

Listing 3-5. Books class

class Books:

 def __init__(self, id, title, author, price, publisher):

 self.id = id

 self.title = title

 self.author = author

 self.price = price

 self.publisher = publisher

Let there be an object of the Books class:

b1 = Books(1, "Decoupled Django", "Gagliardi", 3874, "Apress")

To store this object in the Books table of the above SQLite database,

we need to unpack the attributes of this object need to be manually to

equivalent SQL types, and construct the SQL query string argument for the

execute() method.

cur.execute("INSERT INTO Books VALUES (?,?,?,?,?)",\

 (b1.id, b1.title, b1.author, b1.price, b1.publisher))

CHAPTER 3 DJANGO ORM

58

On the other hand, when the execute() method is provided with a

SELECT query string, it returns a resultset. Each row in the resultset is a

dictionary of fields and their values. You will have to populate the Book

object by parsing the dictionary into the object’s attributes.

cur.execute("select * from Books WHERE author=?",("

Gagliardi",))

row=cur.fetchone()

b1=Books(row['id'], row['title'], row['author'], row['price'],

row['publisher'])

Such a manual conversion between Python object attributes and SQL

data types is extremely cumbersome. Moreover, things become messy

when you are required to modify the class attributes. Instead, if you could

work only with the objects and leave its interaction with the database to

some handler, things would become extremely convenient, scalable, and

easier to maintain. The Object-Relational Mappers are meant to perform

exactly this task.

As the name suggests, the ORM API maps the object attributes with

the structure of a table in a relational database. It may be noted that in the

theory of RDBMS, the table is called a relation. Each object corresponds to

a row in the mapped table, and each attribute of the object corresponds to

a column in the table structure. Figure 3-3 illustrates how the ORM acts as

an interface between a Python class and a database table.

CHAPTER 3 DJANGO ORM

59

Figure 3-3. Object-Relational Mapper

There are a number of ORM libraries for Python that act as an object-

oriented abstraction layer on top of the DB-API modules. Django has its

own ORM, which is in fact used by the Django framework as a default for

interacting with SQLite and the other relational databases, such as MySQL,

PostgreSQL, etc. The other popular ORM libraries are SQLAlchemy,

SQLObject, Peewee, and more.

To add a database support to your Django application, you need to

undertake the following steps.

CHAPTER 3 DJANGO ORM

60

 Define a Model

Define a class with its attributes matching with the desired structure of

a table in the relational database of your choice. In Django terminology,

such a class is called model and subclasses the Model class defined in the

django.db.models module. A Django app may have more than one model.

Their definitions are placed in the models.py module, which the startapp

command automatically creates inside the app folder.

You should find the models.py file, virtually empty, in the firstapp

package folder. Let us define a Book model (as in Listing 3-6) whose

attribute structure matches with the field structure of the Books table to be

created in the backend database.

Listing 3-6. Book model

from django.db import models

Create your models here.

class Book(models.Model):

 id = models.IntegerField(primary_key=True)

 title = models.CharField(max_length=50)

 author = models.CharField(max_length=50)

 price = models.IntegerField()

 publisher = models.CharField(max_length=50)

 class Meta:

 db_table = "books"

The Meta subclass is completely optional. It basically adds a certain

metadata of the model. Here, we are setting the db_table property. When

this model structure is translated to the table in the database, Django uses

this name. If not specified, Django uses the name of the model class itself

as the table name.

CHAPTER 3 DJANGO ORM

61

Note that each attribute is an object of one of the Field classes, defined

in the django.db.models module. We shall learn more about the field

types later.

 Database Configuration

Choose the database for your Django project. The Django project set up

with the startproject command is configured to use the SQLite database

as the backend. You can find the DATABASES section in the settings.py

module of the project, as shown in Listing 3-7.

Listing 3-7. DATABASES settings

DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.sqlite3',

 'NAME': BASE_DIR / 'db.sqlite3',

 }

}

Django has built-in support for other databases like MySQL, Oracle,

and PostgreSQL in addition to SQLite. To choose any of these types, you

will need to set the respective backend database engine. For instance,

change the ENGINE property to 'django.db.backends.mysql' if you

intend to employ a MySQL database. You may have to provide additional

information about the hostname, port, username, password, etc., in the

database configuration settings. A typical database configuration for

MySQL database looks like the one shown in Listing 3-8.

CHAPTER 3 DJANGO ORM

62

Listing 3-8. MySQL settings

DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.mysql',

 'NAME': 'mydatabase',

 'USER': 'root',

 'PASSWORD': '',

 'HOST': 'localhost',

 'PORT': '3306',

 }

}

For now, let us keep the database configuration to its default choice of

a SQLite database.

Next, we need to ensure that the Django app is added to the list of

INSTALLED_APPS in the settings.py file.

INSTALLED_APPS = [

 # pre-installed apps,

 'firstapp',

]

 Run Migrations

We are now in a position to translate the model attribute structure to

the corresponding table structure in our designated SQLite database.

Django uses the mechanism of migration to propagate the models into the

database schema.

CHAPTER 3 DJANGO ORM

63

The migration-related commands are executed with the manage.py

script. Remember we had already run the migrate command? It was to

create the tables from the models in the pre-installed apps. For example,

we created a superuser and a normal user. These have been stored in the

auth_user table. Now that we have added a new app in the project, we

need to run the migrations again.

First step is to run the makemigrations command. That helps Django

detect if there have been new models added, or any existing models

modified.

(djenv) C:\workspace\firstproject>python manage.py

makemigrations

Migrations for 'firstapp':

 firstapp\migrations\0001_initial.py

 - Create model Book

Django has found out that a new model has been defined, and it

needs to be propagated. To view the SQL equivalent statements internally

executed while performing migrations, run the sqlmigrate command:

(djenv) C:\workspace\firstproject>python manage.py sqlmigrate

firstapp 0001

BEGIN;

--

-- Create model Book

--

CREATE TABLE "books" ("id" integer NOT NULL PRIMARY KEY,

"title" varchar(50) NOT NULL, "author" varchar(50) NOT NULL,

"price" integer NOT NULL, "publisher" varchar(50) NOT NULL);

COMMIT;

CHAPTER 3 DJANGO ORM

64

Finally, update the database schema by executing the above SQL query

by running the migrate command:

(djenv) C:\workspace\firstproject>python manage.py migrate

Operations to perform:

 Apply all migrations: admin, auth, contenttypes, firstapp,

sessions

Running migrations:

 Applying firstapp.0001_initial... OK

 Register Model with Admin Site

Open the database with the SQLite viewer app to confirm if the Books table

has been created. However, you won’t see the Books table on the Admin

site of your project. To be able to administer your model, you need to

register it with the admin site.

Open the admin.py module available in the app package folder. Import

the Book model, and register the same as in Listing 3-9.

Listing 3-9. admin.py

from django.contrib import admin

Register your models here.

from .models import Book

admin.site.register(Book)

Go to the Site administration page by logging in with the superuser

credentials. The Books model will now be visible as shown in Figure 3-4.

CHAPTER 3 DJANGO ORM

65

Figure 3-4. Admin home page showing the Books model

 Django Admin Shell

One of the very powerful but often underused features of the Django

framework is its ability to interactively access the models, the database,

and other components of a Django project from inside a Python shell.

When invoked, the Django admin shell imports the parameters and

settings of your current project, and you can handle its resources,

especially the models and the database, from the Python prompt.

To invoke the Django shell, run the manage.py script from the

command prompt:

(djenv) C:\workspace\firstproject>python manage.py shell

CHAPTER 3 DJANGO ORM

66

This opens a Python shell, with the settings of your project already

imported.

Python 3.12.0 (tags/v3.12.0:0fb18b0, Oct 2 2023, 13:03:39)

[MSC v.1935 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more

information.

(InteractiveConsole)

>>>

The Django shell provides easy access to the Object-Relational Mapper

(ORM) so that you can directly interact with the database and perform the

CRUD operations on the database by calling the corresponding methods

defined in the model class.

 Add Objects

Let us start by importing the Book model (which we have defined in the

earlier section) in the Django shell.

>>> from firstapp.models import Book

Go ahead and declare an object of the Book class:

>>> b1 = Book(1, "Decoupled Django", "Gagliardi", 3874,

"Apress")

This object naturally resides in the memory. To save its data into the

table mapped with the table during the migration process, you need to

explicitly call its save() method.

>>> b1.save()

If you go back to the home page of the admin site, the Books model

(note that Django’s admin interface displays the plural form of the model

name), which was empty earlier, now shows the newly added Book object.

CHAPTER 3 DJANGO ORM

67

Instead of declaring an object and then calling its save() method, you

can use a convenience method, create(), available to the QuerySet class.

Let us add a couple of books with the help of the create() method.

>>> b2 = Book.objects.create(id=2, title="Beginning Django",

author="Rubio", price=3053, publisher="Apress")

>>> b3 = Book.objects.create(id=3, title="Pro Django",

author="Alchin", price=4284, publisher="Apress")

 Retrieval

Ok, so we now have three objects in the Books model. How do we retrieve

them – something that the SQL SELECT query does? The Django model

class has a Manager attribute. Django adds a Manager with the name

objects to every Django model class.

>>> type(Book.objects)

<class 'django.db.models.manager.Manager'>

The all() method of the Manager class returns the QuerySet

consisting of all the objects in the model.

>>> Book.objects.all()

<QuerySet [<Book: Book object (1)>, <Book: Book object (2)>,

<Book: Book object (3)>]>

To fetch a single object (corresponding to a single row in the mapped

table), you may also use the get() method from the Manager class.

>>> Book.objects.get(id=2)

<Book: Book object (2)>

Note that the get() method must retrieve only a single instance. If

multiple records match the query specified within the get() method, this

will result in a “MultipleObjectsReturned” error.

CHAPTER 3 DJANGO ORM

68

The QuerySet object is a list of objects. However, the above result is not

quite meaningful, as it hardly reveals anything about the attributes. Hence,

we shall add a __str__() method (as in Listing 3-10) in the Book model.

Listing 3-10. Book model updated

from django.db import models

Create your models here.

class Book(models.Model):

 id = models.IntegerField(primary_key=True)

 title = models.CharField(max_length=50)

 author = models.CharField(max_length=50)

 price = models.IntegerField()

 publisher = models.CharField(max_length=50)

 class Meta:

 db_table = "books"

 def __str__(self):

 return "Title : {} Author : {} Price : {}".format(self.

title, self.author, self.price)

Note that the __str__() is Python’s magic method that returns a string

version of an object. Check the output of all() method now:

>>> Book.objects.all()

<QuerySet [<Book: Title : Decoupled Django Author : Gagliardi

Price : 3874>, <Book: Title : Beginning Django Author : Rubio

Price : 3053>, <Book: Title : Pro Django Author : Alchin

Price : 4284>]>

CHAPTER 3 DJANGO ORM

69

Or you can even iterate through the QuerySet object:

>>> for i in Book.objects.all():

... print(i)

...

Title : Decoupled Django Author : Gagliardi Price : 3874

Title : Beginning Django Author : Rubio Price : 3053

Title : Pro Django Author : Alchin Price : 4284

 Search

We can perform a search for objects within the given model. Recall that

similar action is performed by SELECT FROM with the WHERE clause

query in SQL. The search criteria are specified as a filter() method of the

QuerySet.

This statement returns the book with ID=2.

>>> Book.objects.all().filter(id=2)

<QuerySet [<Book: Title : Beginning Django Author : Rubio Price

: 3053>]>

You can apply Field lookup operators as the parameters in the

filter() method. Some of the lookup criteria are

contains: Equivalent to LIKE in SQL

range: Equivalent to BETWEEN in SQL

gte (greater than or equal to): Equivalent to

>= in SQL

lte (less than or equal to): Equivalent to <= in SQL

CHAPTER 3 DJANGO ORM

70

Here are some example uses of these operators:

>>> Book.objects.all().filter(price__gte=4000)

<QuerySet [<Book: Title : Pro Django Author : Alchin

Price : 4284>]>

>>> Book.objects.all().filter(price__range=(3500, 4500))

<QuerySet [<Book: Title : Decoupled Django Author : Gagliardi

Price : 3874>, <Book: Title : Pro Django Author : Alchin

Price : 4284>]>

>>> Book.objects.all().filter(title__contains="Django")

<QuerySet [<Book: Title : Decoupled Django Author : Gagliardi

Price : 3874>, <Book: Title : Beginning Django Author : Rubio

Price : 3053>, <Book: Title : Pro Django Author : Alchin

Price : 4284>]>

 Updating the Objects

Django ORM makes modifying one or more attributes of one or more

objects in a model super easy. The object Manager provides an update()

method. The method accepts a variable number of keyword arguments,

each specifying the new value of an attribute. Under the hood, the

update() method executes the SQL UPDATE query

For example, you may want to change the name of the publisher in all

the records from Apress to Springer:

>>> Book.objects.all().update(publisher="Springer")

This is equivalent to the SQL UPDATE query as

UPDATE Books SET publisher="Springer"

CHAPTER 3 DJANGO ORM

71

Or increase the price of each book by 100. Here, we import the F()

function from the django.db.models module. It represents the value of a

given model field. Hence, F(‘price’) gives the value of the price field, which

we can use in an expression to compute the new price.

>>> from django.db.models import F

>>> Book.objects.all().update(price=F('price')+100)

Check the effect of these statements in the admin interface, a SQLite

viewer, or even by retrieving all() objects in the Django shell itself.

You can combine the filter() method along with update() to modify

the attributes of only those objects that satisfy the given criteria.

As an afterthought, you’ve decided to roll back the increase with

price>4000. Run the following statement for the purpose:

>>> Book.objects.filter(price__gte=4000).

update(price=F('price')-100)

Finally, removing one or more objects (and, in turn, rows from the

table) is done with the delete() method. Understandably, you will always

call this method along with a filter, else all the records will be removed. You

can also use the get() method to delete a single instance.

As an example, we shall remove an object with ID=1:

>>> Book.objects.get(id=1).delete()

The Django admin shell thus gives a convenient access to the Django

ORM. It’s a very handy tool to test and debug database interactions without

the need to modify the Django project. We will in fact use all these CRUD

methods (add(), filter(), update(), etc.) programmatically inside

Django’s views throughout the subsequent chapters of this book.

CHAPTER 3 DJANGO ORM

72

 Model Field Types

While a Django model is a regular Python class, the behavior of its

attributes is very unique. As mentioned above, it subclasses the Model

class in the django.db.models module. The fields are the most crucial part

of the model definition. An attribute in a model class is a class attribute

(an attribute outside any of the instance methods) and is an instance of

an appropriate Field class. In the example used here, the attributes title,

price, etc., are the instances of CharField and IntegerField. Django ORM

provides a number of other field types to choose from.

Here is the interesting (and intriguing) part. If title, author, price, etc.,

are the class attributes, how is it that each instance of Book class (each

book) has a different value title, author, or price, which is what an instance

attribute does?

Let us create a new Book object:

>>> id=4

>>> title = "A new Django Book"

>>> author = "Django Expert"

>>> price = 2000

>>> publisher = "Springer Nature"

>>> b1 = Book(id, title, author, price, publisher)

The parameters passed to the constructor are regular Python types –

the variables id and price are integers and title, author, and publisher

variables are of str type – and not the Field types of the class attributes. And

there is no explicit __init__() constructor either that initializes instance

attributes like self.title. So what is happening here?

The Django ORM handles this paradox in a very peculiar manner. As

mentioned above, the class attributes of the model serve as the blueprint

of the table to be created when the migration is performed. When you

declare an instance of the model, Django stores the data in an internal

CHAPTER 3 DJANGO ORM

73

structure of its own and only maps this structure with the field structure

whenever you call the API methods such as create(), save(), update(),

or delete().

That brings us to the various field types that Django ORM provides.

As per the Django documentation, there are more than two dozen field

classes, the subclasses of an abstract Field class. The field types, employed

in most use cases, are as follows.

 CharField

Easily the most common type, normally used to store string attributes such

as name, title, etc. For fairly large sized text, you can use the TextField

type. Usually, an additional argument – max_length – is given to the

CharField constructor:

title = models.CharField(max_length=50)

While the value in the given CharField is a Python string, when

migrated to the database, the corresponding field becomes a VARCHAR or

equivalent data type supported by the corresponding database product.

The TextField attribute is mapped to SQL’s TEXT field type.

 IntegerField

The attributes intended to store integer values such as EmployeeID,

RollNo, etc., are defined to be of IntegerField type in a model.

BigIntegerField (64-bit integer), SmallIntegerField, AutoField, etc.,

are the other field types in the category. If you want to set a certain field

to be a primary key in the mapped table, you can pass a primary_key

argument and set it to True.

id = models.IntegerField(primary_key=True)

CHAPTER 3 DJANGO ORM

74

You can, of course, set any field as the primary key of the module. On

the database side, IntegerField is translated as INT, INTEGER, or any

such field type supported by the database you use.

 FloatField

A float Python object, which is a floating-point number, can be stored in an

attribute of FloatField. Examples can be salary, price, etc.

salary = models.FloatField()

A FloatField is conveniently mapped to FLOAT or DOUBLE field

types in SQL.

 BooleanField

This type of model attribute is also frequently employed, usually to store bool

type values (true or false). For example, you may want to provide an attribute –

isebook – to indicate whether a book is available in ebook format or not.

isebook = models.BooleanField()

Most of the RDBMS products (MySQL, PostgreSQL, etc.) have a

BOOLEAN field type, to which the BooleanField model attribute is

mapped against.

 DateField

Python stores the date in the datetime.date object. The corresponding

model attribute in Django is DateField(). This attribute type is often

required in a model definition, for example, date of birth, date of

appointment, date of publication, etc.

publication_date = models.DateField()

CHAPTER 3 DJANGO ORM

75

As you would expect, this type of model attribute is translated to the

DATE type of SQL, when migrated.

Apart from the above, there are several other Field types in Django. We

shall use them later, if and when required.

We can see that a certain ORM type represents a corresponding Python

data type. On the other hand, the ORM type is mapped to a corresponding

SQL type upon migration. Table 3-1 comes handy for understanding the

relation between Python types, ORM types, and SQL types.

Table 3-1. Django ORM types

Python Type ORM Type SQL Type

str CharField or TextField VARCHAR or TEXT

integer IntegerField, BigIntegerField, AutoField INT, INTEGER, BIGINT

float FloatField, DecimalField FLOAT, DOUBLE, DECIMAL

bool BooleanField BOOLEAN

date, time DateField, DateTimeField DATE, TIMESTAMP

 Types of Relationships

Let us have a brief recap of some of the key concepts of the RDBMS. In

a relational database, a relation is a table that represents an entity. The

attributes of the entity are the columns in the table, and each row is an

instance of the entity. One of the columns in a table is constrained to have

a unique value and is said to be the primary key of the table.

In Figure 3-5, the Products table is designed to have the ProductID

column as the primary key. Similarly, in another Customers table,

CustomerID is its primary key.

CHAPTER 3 DJANGO ORM

76

Figure 3-5. Products and Customers tables with primary key

When the primary key of one table appears as one of the fields in

another table (which may have its own primary key), then it is called the

foreign key. The Invoices table shown in Figure 3-6 has CustomerID as a

field (or column) that refers to the CustomerID of the Customers table,

and hence, it is a foreign key. Similarly, the ProductID column in the

Invoices table is another foreign key as it refers to the primary key of the

Products table.

Figure 3-6. Invoices table with foreign keys

CHAPTER 3 DJANGO ORM

77

Based on the foreign keys, the tables can be joined. We can fetch the

name of the customer of a given invoice number, retrieve the price of

the product purchased, and compute values like tax. The idea behind

designing related tables is to avoid data redundancy (unnecessary

repetition of same data in many rows) and ensure data integrity.

Imagine that instead of the unique productid in the Invoices table, a

longish name of product field is used; it will have to be entered every time

a customer buys it – and it may introduce some typo errors. Similarly, if a

product whose ID is referred to in the Invoices table is removed from the

Products table, the other details of the product such as its price will not be

available.

Relational databases have a mechanism to prevent the deletion of

primary key if it is being used in the related table, so that the data integrity

is intact.

Since the Django models are mapped to the corresponding tables in

the database, you can define such relationships between the two model

fields also. Three types of relationships exist:

• One to one

• One to many

• Many to many

 One-to-One Relationship

If, for each primary key in one model, there exists only one record in

the other related model, the two models are said to have a one-to-one

relationship.

Let us take an example of a college model and a principal model. A

college can have only one principal, and the other way round, one person

can be a principal of only one college.

CHAPTER 3 DJANGO ORM

78

The college model can be described as in Listing 3-11.

Listing 3-11. College model

class College(Model):

 CollegeID = models.IntegerField(primary_key = True)

 name = models.CharField(max_length=50)

 strength = models.IntegerField()

 city=models.CharField(max_length=50)

While defining the Principal model, we need to provide the CollegeID

field as the foreign key to indicate the person with the given ID is the

principal of which college. To express this relationship, the foreign key

field must be of a special field type – OneToOneField. The first parameter

should be the table to which the foreign key refers to, and the second

option specifies what should happen in case the associated object in the

primary model is deleted. The on_delete option should be one of the

following values:

• CASCADE: Deletes the object containing the

ForeignKey.

• PROTECT: Prevents deletion of the referenced object

• RESTRICT: Prevents deletion of the referenced object

by raising RestrictedError

Let us defined the Principal model with the field structure as in

Listing 3-12.

Listing 3-12. Principal model

class Principal(models.Model):

 id = models.IntegerField(primary_key=True)

 name = models.CharField(max_length=50)

 qualification = models.CharField(max_length=50)

CHAPTER 3 DJANGO ORM

79

 CollegeID = models.OneToOneField(

 College,

 on_delete=models.CASCADE

)

 One-to-Many Relationship

In a one-to-many relationship, one object of a model can be associated

with one or more objects of another model. A case in point is that of a

teacher qualified to teach a subject, but there may be more than one

teacher in a college who can teach the same subject.

The Subject model is as explained in Listing 3-13.

Listing 3-13. Subject model

class Subject(models.Model):

 Subjectcode = models.IntegerField(primary_key = True)

 name = models.CharField(max_length=30)

 credits = models.IntegerField()

The Teacher model (Listing 3-14) has its own primary key. Its foreign

key – Subjectcode – establishes one-to-many relationship with the

Subject model.

Listing 3-14. Teacher model

class Teacher(models.Model):

 TeacherID = models.IntegerField(primary_key=True)

 name = models.CharField(max_length=50)

 qualification = models.CharField(max_length=50)

 subjectcode=models.ForeignKey(

 Subject,

 on_delete=models.CASCADE

)

CHAPTER 3 DJANGO ORM

80

 Many-to-Many Relationship

In a many-to-many relationship, multiple objects of one model can be

associated with multiple objects of another model.

Let us redefine the relationship between the subject and teacher

models in the above example. Assuming that the college has more than

one teacher who can teach the same subject, additionally, a teacher

can teach more than one subject as well. So there is a many-to-many

relationship between the two.

Django implements this with the ManyToManyField type. Let us use it

in defining the Subject model.

The Teacher model is straightforward (refer to Listing 3-15).

Listing 3-15. Teacher model updated

class Teacher(models.Model):

 TeacherID = models.IntegerField(primary_key=True)

 name = models.EmailField(max_length=50)

 qualification = models.CharField(max_length=50)

The design of the Subject model class (as in Listing 3-16) reflects the

many-to-many relationship.

Listing 3-16. Subject model updated

class Subject(models.Model):

 Subjectcode = models.IntegerField(primary_key = True)

 name = models.CharField(max_length=30)

 credits = models.IntegerField()

 teacher = models.ManyToManyField(Teacher)

CHAPTER 3 DJANGO ORM

81

Let us migrate these models to construct corresponding tables in the

underlying SQLite database.

(djenv) C:\workspace\firstproject>python manage.py

makemigrations firstapp

Migrations for 'firstapp':

firstapp\migrations\0002_subject_teacher.py

 - Create model Subject

 - Create model Teacher

To have a look at the SQL queries that will be indirectly executed by

Django ORM, run the sqlmigrate command:

(djenv) C:\workspace\firstproject>python manage.py sqlmigrate

firstapp 0002_subject_teacher

BEGIN;

--

-- Create model Subject

--

CREATE TABLE "firstapp_subject" ("Subjectcode" integer NOT NULL

PRIMARY KEY, "name" varchar(30) NOT NULL, "credits" integer

NOT NULL);

--

-- Create model Teacher

--

CREATE TABLE "firstapp_teacher" ("TeacherID" integer NOT NULL

PRIMARY KEY, "name" varchar(50) NOT NULL, "qualification"

varchar(50) NOT NULL);

--

-- Add field teacher to subject

--

CHAPTER 3 DJANGO ORM

82

CREATE TABLE "firstapp_subject_teacher" ("id" integer NOT

NULL PRIMARY KEY AUTOINCREMENT, "subject_id" integer NOT

NULL REFERENCES "firstapp_subject" ("Subjectcode") DEFERRABLE

INITIALLY DEFERRED, "teacher_id" integer NOT NULL REFERENCES

"firstapp_teacher" ("TeacherID") DEFERRABLE INITIALLY DEFERRED);

CREATE UNIQUE INDEX "firstapp_subject_teacher_subject_id_

teacher_id_abb3b881_uniq" ON "firstapp_subject_teacher"

("subject_id", "teacher_id");

CREATE INDEX "firstapp_subject_teacher_subject_id_00acbe0f" ON

"firstapp_subject_teacher" ("subject_id");

CREATE INDEX "firstapp_subject_teacher_teacher_id_0d8af8b3" ON

"firstapp_subject_teacher" ("teacher_id");

COMMIT;

Finally, run the migrate command.

(djenv) C:\workspace\firstproject>python manage.py migrate

Operations to perform:

 Apply all migrations: admin, auth, contenttypes, firstapp,

sessions

Running migrations:

 Applying firstapp.0002_subject_teacher... OK

Thus, three new tables (firstapp_subject, firstapp_teacher, and

firstapp_subject_teacher) will be created in the SQLite database (db.

sqlite3) in the project root folder.

 Summary

In this chapter, we have learned an important aspect of the Django

framework that is also at the center of the entire Django application,

namely, models. We started with Python’s DB-API, discussed its

CHAPTER 3 DJANGO ORM

83

drawbacks, and explained the concept of ORM. We learned how to define

models and how to perform migrations. We also learned to perform CRUD

operations on the models from within the Django Shell.

In the end, we discussed the field types and the types of relationships

between the models. In the next chapter, we shall deal with the third

organ of Django’s MVT architecture – templates – and learn how to render

dynamic web pages by populating the templates with the data from

the models.

CHAPTER 3 DJANGO ORM

85© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_4

CHAPTER 4

Django Templates
The templates are the presentation layer of a Django web app. Django is a

data-driven web framework. Its elaborate templating mechanism makes it

very easy to merge the data from sources such as databases with the static

HTML to generate dynamic web pages.

This chapter takes a detailed look at the powerful features of Django’s

Template Language. Let us discuss the following topics in this chapter:

• Template object

• render() function

• Template context

• Template variables

• Tags

• Form templates

• Class-based views

• Generic views

• Static assets

• Template inheritance

https://doi.org/10.1007/979-8-8688-1472-3_4#DOI

86

 Template Object

The word “template” generally refers to a blueprint or a skeleton of

a certain product, with a fixed design interspersed with one or more

placeholders for inserting variable components. Many word-processing

and presentation software provide ready-to-use templates for quickly

preparing documents such as resumes, certificates, flyers, meeting agenda,

etc. To prepare a resume, for example, you can select a template of your

desired design. The layout, the headings, the fonts and colors, etc., are

pre-formatted with placeholders for the variable information. You just

fill up the required details such as name, address, experience, etc., in the

appropriate places provided in the template.

In the context of a web framework such as Django, a template is

essentially a web page, with its static HTML content intermittently

populated with template markups. Django uses its own templating system,

known by the name Django Template Language (DTL). It defines a set of

symbols and keywords that are used in a template web page. The template

engine – a tool that uses certain context data – reads the template code,

interprets the tags in it, and replaces them with the corresponding data

from the context provided.

Figure 4-1 depicts the functioning of a template engine.

CHAPTER 4 DJANGO TEMPLATES

87

Figure 4-1. Template engine

The templating mechanism is controlled by certain parameters set

in the settings module (settings.py). The TEMPLATES section sets the

choice of template backend, the location of templates, etc.

Typically, the TEMPLATES section of the settings module of a Django

project created by the startproject command reads as in Listing 4-1.

Listing 4-1. Templates settings

TEMPLATES = [

 {

 ' BACKEND': 'django.template.backends.django.

DjangoTemplates',

 'DIRS': [BASE_DIR/'templates'],

 'APP_DIRS': True,

 'OPTIONS': {

 'context_processors': [

 'django.template.context_processors.debug',

 'django.template.context_processors.request',

CHAPTER 4 DJANGO TEMPLATES

88

 'django.contrib.auth.context_processors.auth',

 'django.contrib.messages.context_processors.

messages',

],

 },

 },

]

By default, Django uses the Django Template Engine for template

processing. Its functionality is provided in the DjangoTemplates class. This

class is defined in the django.template.backends.django module. The

DIRS parameter is a list of directories where you will put your templates,

i.e., web pages. If you want Django to search for the templates in multiple

directories, put them in the order of preference. By default, it is an empty

list, but the convention is to use the templates directory under the BASE_

DIR, i.e., the parent project folder.

Django also lets you use the jinja2 template engine instead of its

default. If you wish to use it, set the BACKEND parameter to django.

template.backends.jinja2.Jinja2 class.

We know that any view function formulates an HttpResponse from a

Python string that may have various HTML tags, to be returned to the user,

as in the index() function (Listing 4-2).

Listing 4-2. index view

from django.http import HttpResponse

def index(request):

 return HttpResponse("<h2>Hello, World.</h2>")

If we want to render the Hello message that contains a name passed as

an argument to the view function (such as Hello John), we can use any of

Python’s string substitution methods (such as the f-string, or the format()

function) to insert the name argument and then return the response.

Add a user() view function as in Listing 4-3:

CHAPTER 4 DJANGO TEMPLATES

89

Listing 4-3. user view with parameter

def user(request, name):

 return HttpResponse(f"<h2>Hello, {name}.</h2>")

Even if the response is completely static, passing a lengthy string that

represents a hard-coded HTML string as the view response is not feasible.

Ideally, we would like a separately constructed web page to be used by the

view function to formulate its response. The Template object performs

precisely this task.

Django loads the given web page by invoking the get_template()

method of the django.template.loader class to obtain the

Template object.

template=loader.get_template("index.html")

Here, index.html is a simple Hello World web page, situated in the

BASE_DIR/templates folder. If required, this object is manipulated to

insert a certain context data (we shall discuss this aspect in the next

section). The render() method of the Template object returns a string

with the context data substituted at the appropriate placeholders in the

HTML script.

string = template.render(context, request)

Currently we don’t have any placeholders in index.html, nor do we

have any context to be filled. The view function (Listing 4-4) then passes it

as its response.

Listing 4-4. Rendering template

def index(request):

 template=loader.get_template("index.html")

 context = {}

 return HttpResponse(template.render(context, request))

CHAPTER 4 DJANGO TEMPLATES

90

 render() Function

A collection of various convenience functions, defined in the django.

shortcuts module, includes a render() function that really is a shortcut

for rendering a template. Instead of loading the template, inserting

context data in the DTL markups inside the HTML, and returning the

HttpResponse, using the render() function is the all-in-one alternative.

You need to pass an HTTP request object and the template web page as the

mandatory arguments.

render(request, template_page)

Let us change the index() view function as shown in Listing 4-5.

Listing 4-5. render() function

from django.shortcuts import render

def index(request):

 return render(request, 'index.html')

Optionally, you can pass the context data as a Python dictionary object,

the content_type of the response (which is text/html by default), and the

status code to the render() function.

 Template Context

As mentioned earlier, the Django Template Language substitutes variable

data at the appropriately marked placeholders inside the HTML script.

So it is much like the f-string processing in Python, where a variable

surrounded by the curly brackets is substituted by its value. The only

difference is you have to use double curly brackets to mark a template

variable. Hence, in our index.html template page (refer to Listing 4-6), put

{{ name }} to insert the name argument at the runtime.

CHAPTER 4 DJANGO TEMPLATES

91

Listing 4-6. Template web page

<html>

<body>

<h2>Hello, {{ name }}.</h2>

</body>

</html>

The values to be substituted in all the template variables in the HTML

script come from the Context object that you need to pass to the render()

function. Django builds the Context object from a Python dictionary,

with its keys corresponding to the template variable names. The template

engine, during the processing of the template, fills the place of the variable

with the corresponding value in the dictionary. So the call to the render()

function will be

render(request, template, context)

We have already defined a user() view function that takes name

as a path parameter. So start the server and go to the URL http://

localhost:8000/firstapp/user/John. The browser should now show a Hello

John message.

The context argument for the render() function is a dictionary, with

each key being the template variable. The name of the template variable

follows the usual convention – having alphabets, digits, or an underscore.

The template variable may also have a dot character.

Its value may be a singular Python object (string, or a numeric), a list, a

dict, or even an object of any Python class.

We can use the index to access a specific element. If the context

object is

context = {"subjects": ["Phy", "Che", "Maths"]}

CHAPTER 4 DJANGO TEMPLATES

92

then to render the 0th element in the template, use

{{ subjects[0] }}

If it is a dictionary as

context = {"subjects": {"Phy": 60, "Che":70, "Maths":80}}

the template variable to be used to display the marks of “Phy” subject

should be

{{ subjects["Phy"] }}

The dot (.) operator is used in the name of a template variable as a

lookup for a certain attribute of an object. Let us say we pass a Teacher

object as the context:

context = { "teacher": Teacher(id = 1, name = "Anand Bose",

subject = "Data Science", qualification = "ME, Ph.D")}

in which case, to show the name of the teacher in the template output,

the name of the template variable should be

{{ teacher.name }}

 Template Tags

The Django Template Language lets you do a lot more than just outputting

the context data in the response. It provides various tags that add enhanced

processing of the context, such as conditional formatting, iterating over

a collection, etc. The tags related to template inheritance are extremely

important in ensuring that the pages have a uniform look and feel. We shall

discuss the concept of template inheritance in the next chapter.

The template tags are put inside the symbols {% and %}:

{% tag <additional parameters> %}

CHAPTER 4 DJANGO TEMPLATES

93

 {% if %} Tag

To incorporate conditional processing inside the template, DTL has {% if

%}, {% elif %}, {% else %}, and {% endif %} tags.

Just like the if statement in Python, the {% if %} tag evaluates a variable,

and if it is “true”, the contents of the subsequent block are output. Each {%

if %} tag must have a closing {% endif %} tag. In between, there may be one

or more {% elif %} tags and an {% else %} tag.

{% var1 %}

 Expression1

{% elif var2 %}

 Expression2

{% else %}

 Expression3

{% endif %}

Let us put the {% if %} tag to some realistic use. Earlier, we had defined

the Book model. Let us add a new Boolean field – ebook (as in Listing 4-7) –

to indicate whether the book is available in ebook format or not. The newly

added field is shown in boldface.

Listing 4-7. Book model – modified

class Book(models.Model):

 id = models.IntegerField(primary_key=True)

 title = models.CharField(max_length=50)

 author = models.CharField(max_length=50)

 price = models.IntegerField()

 publisher = models.CharField(max_length=50)

 ebook = models.BooleanField(default=True)

CHAPTER 4 DJANGO TEMPLATES

94

The default value of this field as True means that all the books are

available in ebook format. As we have modified the model, we need to go

through the process of migration as below:

python manage.py makemigrations firstapp

python manage.py migrate

Out of the book objects in the model, let us update the book with ID=2

and set its ebook attribute to False, indicating that it is not available in

ebook format.

python manage.py shell

>>> from firstapp.models import Book

>>> b1 = Book.objects.get(id=2)

>>> b1.ebook=False

>>> b1.save()

Next, let us define a book() view as in Listing 4-8, that retrieves a Book

object with the given ID as the path parameter and pass it as the context to

a book.html template.

Listing 4-8. book view

def book(request, id):

 book = Book.objects.get(id=id)

 context = {'book' : book}

 return render(request, 'book.html', context)

The book.html (Listing 4-9) template simply outputs the attributes of

the retrieved book, such as the title, author, etc. Additionally, it checks if

the ebook attribute is True or False and renders a conditional response.

CHAPTER 4 DJANGO TEMPLATES

95

Listing 4-9. book.html

<html>

<body>

 <h2 style = "text-align: center;">Title: {{ book.

title }}</h2>

 <p>ID: {{ book.id }}</p>

 <p>Author: {{ book.author }}</p>

 <p>Price: {{ book.price}}</p>

 <p>Publisher: {{ book.

publisher }}</p>

 {% if book.ebook %}

 <p>Available as Ebook?: Yes</p>

 {% else %}

 <p>Available as Ebook?: No</p>

 {% endif %}

 <hr>

</body>

</html>

To wire up the book() view with the route that passes the ID parameter,

add this path to the urlpatterns in the app’s URLCONF.

path("book/<int:id>/", views.book, name="book"),

With these steps completed, start the server, and check the browser

display (Figure 4-2) for “book/2” endpoint.

CHAPTER 4 DJANGO TEMPLATES

96

Figure 4-2. {% if %} tag

Try and check the same for any other book that has its ebook attribute

as True.

 {% for %} Tag

The for tag is employed in a template when the context variable is a

collection of objects and you want to iterate over the collection. The syntax

of Django’s for template tag is similar to the for statement in Python,

except that every {% for %} must have a corresponding {% endfor %} tag.

{% for object in collection %}

{{ object }}

{% endfor %}

Unlike Python, the DTL doesn’t use uniform indents to mark a block.

Hence, the endfor tag marks the end of the for loop. Same thing applies to

the use of {% endif %} with each {% if %}. There may be one or more HTML

expressions or other template tags in between. For example, you may want

to use the {% if %} . . . {% endif %} construct inside the for loop.

CHAPTER 4 DJANGO TEMPLATES

97

The following view function sends a list as the context to a given

template:

def langs(request):

 context = {"langs" : ["Python", "Java", "C++"]}

 return render(request, 'template.html', context)

We employ a {% for %} . . {% endfor %} pair of tags in the template code

(Listing 4-10) to display the list of languages as the response.

Listing 4-10. for – endfor tag

 {% for lang in langs %}

 {{ lang }}

 {% endfor %}

Django outputs the list when the browser is pointed to the URL route

list/ (it needs to be mapped to the langs() view in the urls.py module as

discussed earlier).

• Python

• Java

• C++

Let us use the {% for %} tag to display the list of books. Add the books()

view. It passes the collection of Book objects to the list_books.html

template (Listing 4-11).

CHAPTER 4 DJANGO TEMPLATES

98

Listing 4-11. books view

from django.shortcuts import render

from .models import Book

def books(request):

 books = Book.objects.all()

 context = {'books': books}

 return render(request, 'list_books.html', context)

The {% for %} tag in Listing 4-12 processes a Book object at a time and

renders its attributes in one iteration.

Listing 4-12. list_books.html

<html>

<body>

 <h2 style = "text-align: center;">List of Books</h2>

 {% for book in books %}

 <p>Title: {{ book.title }}</p>

 <p>Author: {{ book.author }}</p>

 <p>Price: {{ book.price}}</p>

 <p>Publisher: {{ book.

publisher }}</p>

 <hr>

 {% endfor %}

</html>

You need to map the books() view to the “books/” route by appending

a new path to the urlpatterns list.

path("books/", views.books, name="books"),

CHAPTER 4 DJANGO TEMPLATES

99

The URL http://localhost:8000/firstapp/books/ now displays the list of

books as shown in Figure 4-3.

Figure 4-3. Using loop in template

Out of the various other template tags in DTL, we shall discuss the

{% block %} and {% extends %} tags when we discuss the “Template

Inheritance” section.

CHAPTER 4 DJANGO TEMPLATES

100

 Form Templates

The view functions defined so far in this chapter are invoked when the

user visits their corresponding URL routes with the HTTP GET request,

which retrieves one or more resources from the server. The books() view

retrieves a list of books, and the book() view retrieves a book whose ID

matches with the ID parameter it parses from the URL. To add a new

resource (in this case, a new book) or to update any existing resource, we

need to send a POST request, along with the data to add or update.

An HTML form collects the data from the user in appropriate input

elements (such as text box, radio buttons, drop-downs, etc.) and sends it

to a function on the server that parses the request data and uses it to add/

update a book.

Django offers a robust form rendering API that makes it very

convenient to construct a form with elements matching with the types of

fields in the model definition and validate the data entered by the user

before performing any action such as adding a new object or updating an

existing object.

 HTML Form

Let us start by designing a simple HTML form that accepts inputs for the

fields in the Book model that we have already defined. As mentioned

above, the method attribute of the form should be set to POST. When

submitted, the form data is sent to a view function addbook(), which is the

action attribute of the form. We have four text input elements for the fields

in the Book model (title, author, price, and publisher). The HTML script

below is saved as bookform.html (Listing 4-13) in the templates folder.

CHAPTER 4 DJANGO TEMPLATES

101

Listing 4-13. bookform.html

<form action="/firstapp/addbook/" method="post">

 {% csrf_token %}

 <p><label for="ttl">Title: </label>

 <input id="ttl" type="text" name="title"></p>

 <p><label for="auth">Author's name: </label>

 <input id="auth" type="text" name="author"></p>

 <p><label for="price">Price: </label>

 <input id="price" type="text" name="price"></p>

 <p><label for="pub">Publisher: </label>

 <input id="pub" type="text" name="publisher"></p>

 <input type="submit" value="OK">

</form>

Note the use of the {% csrf_token %} tag inside the <form> ..

</form> code. This tag is Django’s mechanism against the CSRF

attacks.

CSRF is an acronym for Cross-Site Request Forgery. It is the most

common type of security attack on a website. The attacker utilizes

this type of vulnerability and forces the user (even if they have an

authenticated access) to perform certain actions that eventually turn

out to be harmful for them.

Django installs a middleware called CsrfViewMiddleware (this can be

found in the lists of installed MIDDLEWARE in the settings module). It

provides a handy solution to prevent CSRF attacks.

When a user visits the Django application, it generates a token and

stores it as a cookie in the client’s machine. The {% csrf_token %}

tag in the HTML form code renders a hidden field with the name

“csrfmiddlewaretoken”.

CHAPTER 4 DJANGO TEMPLATES

102

<input type="hidden" name="csrfmiddlewaretoken"
value="S9tIMDKsbtbhbKhmr1BXsO7k2znSPIQkvkq
fH4IqVre5mOdSfUuAyEYbtlzetnkZ">

As the user submits the form, the server checks if it has this token

field and its value is the same as the cookie value. If it doesn’t match,

the further processing of the form is terminated, thereby avoiding any

unwanted action.

The above HTML form is really a static template, without any variable

component. To render this form, add a view function – getbook() – in the

views.py module (as in Listing 4-14).

Listing 4-14. getbook view

def getbook(request):

context={}

return render(request, "bookform.html", context)

Make sure that this view is mapped to a URL route by updating the

urlpatterns list in the urls.py module:

path("getbook/", views.getbook, name="getbook"),

You will get a basic HTML form rendered on your browser (Figure 4-4).

CHAPTER 4 DJANGO TEMPLATES

103

Figure 4-4. HTML form

 Form Class

The HTML form as above works well, especially in relatively simpler cases

(we can improve its design by applying appropriate CSS styles). For more

complex situations though, especially where the models are related

(one-to-one or one-to-many) and for models with fields of more advanced

type, the form design becomes difficult. We also need to validate the data

before processing. The modern HTML5 form fields do present certain basic

client-side validations; form handling of a certain higher level is required.

The Form class (defined in the django.forms module) and various types

of form fields provide an effective form design and validation mechanism.

Define a subclass of django.forms.Form class. Its object renders

an HTML form. The class attributes of the Form class are the objects

of appropriate form field classes, all inherited from the django.forms.

fields.Field class. The form field types are very much similar to the

model field types. For example, the forms.CharField corresponds to the

models.CharField, whereas the forms.BooleanField corresponds to the

models.BooleanField.

CHAPTER 4 DJANGO TEMPLATES

104

The properties of a certain form field are determined by one or more of

the following attributes:

required: A Boolean parameter indicating if a value

to this field is needed. If true, and the field is empty,

it raises the validation error with the ‘This field is

required.’ Message.

label: A text to be associated when the field is

rendered.

initial: You can specify the initial value to use when

rendering this field.

widget: Each field uses a default HTML element

when it is rendered. For example, a CharField is

rendered as a text input element. However, if you

wish to provide a TextArea element, use the widget

property.

So let us declare a BookForm class and define the form fields that reflect

the Book model. Add the script (as in Listing 4-15) in the forms.py module

in the app package folder.

Listing 4-15. forms.py

from django import forms

class BookForm(forms.Form):

 title = forms.CharField(label="Title ", max_length=50)

 author = forms.CharField(label='Author ', max_length=50)

 price = forms.IntegerField(label='Price ')

 publisher = forms.CharField(label = 'Publisher ',

max_length=50)

 ebook = forms.BooleanField(initial=True)

CHAPTER 4 DJANGO TEMPLATES

105

The getbook() view (refer Listing 4-16) passes an object of this form as

a context to the bookform.html template.

Listing 4-16. getbook view with Form object

def getbook(request):

 form = BookForm()

 context={'form' : form}

 return render(request, "bookform.html", context)

In the previous example, the bookform.html script rendered the hard-

coded HTML form elements. Instead, we now want the Django form to be

rendered.

The Django Template Language renders each form field attribute as its

associated HTML widget. For example, the title attribute

title = forms.CharField(label="Title ", max_length=50)

is rendered on the browser as

<label for="id_title">Title:</label>

<input type="text" name="title" maxlength="50" required

id="id_title">

However, Django outputs the field elements in one of the following

predefined outputting styles:

{{ form.as_div }}: Renders the form as a series

of <div> elements, with each <div> containing

one field.

{{ form.as_p }}: Renders the form as a series of <p>

tags, with each <p> containing one field.

CHAPTER 4 DJANGO TEMPLATES

106

{{ form.as_ul }}: Renders the form as a series of

tags, each containing one field. It does not include

the and tags surrounding a sequence of

 .. tags.

{{ form.as_table }}: Renders the form as an HTML

table, with each field and its label in one row. Again,

the enclosing <table> and </table> tags are not

included, you need to explicitly provide them in the

template code.

Moreover, Django does not include the <form> and </form> tags or

an <input type=”submit”> tag too. You have to include them too in the

template code.

So let us modify the bookform.html (Listing 4-17) template that renders

the form in the form of an HTML table.

Listing 4-17. bookform.html – rendering form as a table

<form action="/firstapp/addbook/" method="post">

 {% csrf_token %}

 <table>

 {{ form.as_table }}

 </table>

 <input type="submit" value="OK">

</form>

The user is presented with a tabular layout of all the fields as in

Figure 4-5.

CHAPTER 4 DJANGO TEMPLATES

107

Figure 4-5. The Form class

When a user fills the data and submits the form, the browser is directed

to the “addbook/” route. Let us first wire this URL route to the addbook()

view. Update the app’s urlpatterns list by adding a new path:

path("addbook/", views.addbook, name="addbook"),

What does the addbook() function (refer to Listing 4-18) do?

First, it checks if the request method is POST. If yes, the form instance

is populated with the form data (available in the request.POST dict

object).

To validate the form, call its is_valid() method. Django applies all

the built-in validations with the fields and returns True if it passes the

validation.

If the form is found to be valid, extract the validated values of each

field. The cleaned_data attribute of the form returns a dictionary of the

clean values.

Instantiate an object of the Book model, and call its save() method.

Add the function shown in Listing 4-18 in the views.py module.

CHAPTER 4 DJANGO TEMPLATES

108

Listing 4-18. addbook view with POST request

def addbook(request):

 if request.method == 'POST':

 form = BookForm(request.POST)

 if form.is_valid():

 data = form.cleaned_data

 ttl = data["title"]

 auth = data["author"]

 pr = data["price"]

 pu = data["publisher"]

 b1 = Book(title=ttl, author=auth, price=pr,

publisher=pu)

 b1.save()

 return HttpResponse("<h2>Book added successful-

ly</h2>")

 ModelForm

The django.forms module also includes a handy ModelForm class that pro-

vides a simpler and even more convenient approach to rendering a form

based on the given model’s field structure. Instead of manually defining

the field attributes that match with the model’s structure, you just have to

set the model attribute. Django automatically generates the form fields that

match with the type of model attributes. With the fields attribute, you can

also specify which fields do you want to accept the user inputs for. Setting

fields = "__all__"

populates the form with all the fields. You can also specify only those

fields you require in the form

fields = ["f1", "f2",..]

CHAPTER 4 DJANGO TEMPLATES

109

or exclude one or more fields from the list:

exclude = ["f1", "f2",..]

Listing 4-19 shows our BookForm class based on the ModelForm class.

Listing 4-19. ModelForm class

from django import forms

from .models import Book

class BookForm(forms.ModelForm):

 class Meta:

 model = Book

 fields = "__all__"

We don’t need to change our bookform.html template, or the getbook()

view. The addbook() view becomes even simpler, as in Listing 4-20. After

performing the validation, the form data is automatically mapped to a model

object; just call the save() method of the form to save the object itself.

Listing 4-20. addbook view to save the ModelForm

def addbook(request):

 if request.method == 'POST':

 form = BookForm(request.POST)

 if form.is_valid():

 form.save()

 return HttpResponse("<h2>Book added

successfully</h2>")

Finally, we need a form to let the user change values of one or more

fields of an object. While it should be similar to the bookform generated

by the ModelForm class, we don’t want the input elements to be empty.

Instead, they should be populated by the existing values of the object to be

updated.

CHAPTER 4 DJANGO TEMPLATES

110

This can be done by specifying the instance attribute in the constructor

of the ModelForm class. Let us say we wish to update the details of a book

written by a certain author, and we would pass the name of the author as

a path parameter to the getbook() function. So the getbook() function

should have the signature as

getbook(request, author)

Now the URL that will invoke this view will have to be like “getbook/

xyz”. Hence, this requires a change in the URL mapping. Modify the urls.

py module and add a string path parameter to the URL pattern.

path("getbook/<author>", views.getbook, name="getbook"),

The getbook() view accepts the author parameter from the

URL. Inside the function, we need to locate the object with the given

author. This object is then set as the instance property for the ModelForm

constructor:

b1 = Book.objects.get(author=author)

form = BookForm(instance=b1)

Accordingly, change the code for the getbook() view function in the

views.py module as in Listing 4-21.

Listing 4-21. getbook view showing pre-populated ModelForm

from .forms import BookForm

def getbook(request, author):

 b1 = Book.objects.get(author=author)

 form = BookForm(instance=b1)

 context={'form' : form}

 return render(request, "bookform.html", context)

CHAPTER 4 DJANGO TEMPLATES

111

Rest of the things being the same, start the Django server, and visit

the “getbook/Rubio” URL route to see that the form (as in Figure 4-6) is

populated with the corresponding object.

Figure 4-6. ModelForm populated with object

You can now change any of the fields and submit the form. The

addbook() function, as explained before, will update the current object.

 Class-Based View

Using Python functions in Django’s View layer is an established practice

right from its early versions. In 2008, Django introduced the feature of

class-based views. A view class, inherited from the django.views.View

class, offers better control and flexibility compared to the traditional

function-based views. A class-based view provides the advantages like

better organization and code reusability.

One of the difficulties with the approach of using Python functions as

views is that you either have to write different functions for handling each

type of HTTP request (GET, POST, etc.) or use conditional branching code

inside a single view function.

CHAPTER 4 DJANGO TEMPLATES

112

The View subclass, on the other hand, allows you to define separate

methods for each type of request inside it. You don’t have to provide a

separate route for handling each type of request. All you need to do is to

define a get() method to handle a GET request and a post() method in

the same class that responds to the POST request.

The view function in Listing 4-22 does conditional processing of a GET

or POST request.

Listing 4-22. Function-based view with conditional request

handling

def myfunction(request):

 if request.method=="GET":

 #view logic to handle GET request

 return HttpResponse("response to GET request")

 if request.method=="POST":

 #view logic to handle POST request

 return HttpResponse("response to POST request")

In the new class-based view approach (Listing 4-23), the view class has

separate methods for each request.

Listing 4-23. View class example

from django.views import View

class MyView(View):

 def get(self, request):

 #view logic to handle GET request

 return HttpResponse("response to GET request")

 def post(self, request):

 #view logic to handle POST request

 return HttpResponse("response to POST request")

CHAPTER 4 DJANGO TEMPLATES

113

However, Django’s URL resolver sends the request and path

parameters to a callable function, not a class. To get around this, the View

class has an as_view() class method that returns a method corresponding

to the request type. Hence, we need to map the URL with the class.as_

view() parameter in the path() function to build the urlpatterns list.

path("myview/",MyView.as_view(), name="myview")

Let us elaborate on this usage further. The MyView class defines a get()

method that renders a template that contains a simple HTML form with an

input element as name and posts it back and a post() method that retrieves

the name entered by the user.

Listing 4-24 shows the mytemplate.html web page.

Listing 4-24. mytemplate.html

<html>

 <body>

 <form action="" method="POST">

 {% csrf_token %}

 <p><label for="nm">Name: </label>

 <input id="nm" type="text" name="name"></p>

 <input type="submit" value="OK">

 </form>

 </body>

</html>

and, the View class (refer Listing 4-25):

Listing 4-25. MyView class

class MyView(View):

 def get(self, request):

 return render(request, "mytemplate.html", {})

CHAPTER 4 DJANGO TEMPLATES

114

 def post(self, request):

 name=request.POST['name']

 return HttpResponse(name)

The name/ URL route is defined in the urlpatterns list with

path("name/",MyView.as_view(), name="name")

You can easily implement the form handling mechanism with the view

class by adopting a similar approach that we used in the preceding section.

 Generic Views

The introduction of class-based views is seen as a robust alternative to the

function-based views. To make the web development, especially the task

of writing the view logic, even simpler, various special-purpose generic

view classes have been designed. These views are targeted toward a spe-

cific type of view logic. For example, the TemplateView class is specially

designed to make the template rendering virtually a one-statement code.

All the generic views have to be used as the base class, and you need to

subclass the appropriate generic view. There are generic display classes,

generic classes that help in performing CRUD operations, etc.

Let us learn about some of the frequently used generic views.

 TemplateView

Of all the generic views, the TemplateView is the simplest. It renders the

given template, optionally populating it with the context data collected lo-

cally or from the URL parameters. The TemplateView class is defined in the

django.views.generic.base module. You need to subclass it and set its

template_name attribute.

CHAPTER 4 DJANGO TEMPLATES

115

from django.views.generic.base import TemplateView

class IndexView(TemplateView):

 template_name = "index.html"

Make sure that the above view class is properly mapped to a URL in the

app’s URLCONF.

path("", IndexView.as_view(), name="index"),

The index.html is a simple Hello World script, without any variables.

If, however, it does have to render a variable, the template uses the

context returned by the get_context_data() method in the class (refer

to Listing 4-26). Let us override this method in the above class and pass a

template variable “name” to index.html.

Listing 4-26. TemplateView class

class IndexView(TemplateView):

 template_name = "index.html"

 def get_context_data(self, **kwargs):

 context = {"name" : 'John'}

 return context

Edit the index.html script (Listing 4-27) to include the template

variable in the Hello message.

Listing 4-27. index.html for TemplateView

<html>

 <body>

 <h2> Hello {{ name }}</h2>

 </body>

</html>

CHAPTER 4 DJANGO TEMPLATES

116

We might want to pass the name as a path parameter in the URL. That

is done by changing the URL mapping in the urls.py module, as

done below:

path("<name>", IndexView.as_view(), name="index"),

Instead of assigning some hard-coded value to the context variable, let

us read it from the keyword arguments (Listing 4-28).

Listing 4-28. TemplateView with kwargs

from django.views.generic.base import TemplateView

class IndexView(TemplateView):

 template_name = "index.html"

 def get_context_data(self, **kwargs):

 context = {"name" : self.kwargs['name']}

 return context

One should use the TemplateView especially to render templates with

a certain static content or having very little context. For more complex

requirements, such as rendering a form that collects the data for creating a

new object, or updating it, Django provides other special-purpose generic

views such as CreateView, UpdateView, etc.

 CreateView

As the name suggests, this generic view provides an easier alternative to

create a new object, as compared to the function-based view that we used

earlier in this chapter. We created a ModelForm, rendered it as an HTML

form with a POST method with a template, and saved the form data as an

object after validation. This entire process is performed in a very concise

manner by the subclass of CreateView.

CHAPTER 4 DJANGO TEMPLATES

117

The two mandatory attributes to be defined are the name of the

model (we’ll use the Book model) and the list of fields to be rendered on

the form. By default, Django builds a model form with the name of the

model, followed by _form as a suffix. In our case, it will be book_form.

You can change the suffix if you want, or set the template_name property

to a specific form template, instead of the default. Listing 4-29 includes the

CreateView subclass that renders the ModelForm template.

Listing 4-29. CreateView

from django.views.generic import CreateView

class BookCreateView(CreateView):

 model = Book

 fields = "__all__"

 template_name = 'book_create_form.html'

 success_url = '../books/'

The success_url attribute is the URL route to which the browser is

redirected after successfully creating a new object.

Since we have defined the template_name, you need to provide the

same, much like the ModelForm template (Listing 4-30), except that the

form is posted to the same URL as the one that renders the form.

Listing 4-30. ModelForm template for CreateView

<html>

 <body>

 <form method="post">

 {% csrf_token %}

 <table>

 {{ form.as_table }}

 </table>

CHAPTER 4 DJANGO TEMPLATES

118

 <input type="submit" value="OK">

 </form>

 </body>

</html>

As one would imagine, the BookCreateView class has to be mapped to

a URL route in the URLCONF of the app by updating the urlpatterns list:

from firstapp.views import BookCreateView

urlpatterns += [path("newbook/", BookCreateView.as_view(),

name="newbook")]

A visit to the “newbook/” URL displays the entry form. When the user

submits the same with valid data entered in it, the browser is directed

to the view that displays a list of all the books, including the newly

added book.

 UpdateView

This is one of the generic view classes that allows you to update the con-

tents of an existing object. Django selects the object to be updated, based

on its primary key, or a slug field. To pass the primary key of the object,

add the following URL route in the urls.py module:

urlpatterns += [path("update/<int:pk>", BookUpdateView.as_

view(), name="update")]

As in the case of the CreateView, you need to set the model property

(Book model in our case) and the list of fields to appear in the update form

template. In the example below, the UpdateView subclass uses the same

template that we used earlier, with the CreateView code. An HTML form,

pre-populated with the values of an object corresponding to the primary

key passed from the URL, will appear.

CHAPTER 4 DJANGO TEMPLATES

119

In Listing 4-31, the success_url attribute is set to “../books/” so

that after the object is updated, the list of books appears, showing the

modifications done.

Listing 4-31. UpdateView

from django.views.generic.edit import UpdateView

class BookUpdateView(UpdateView):

 model = Book

 fields = '__all__'

 template_name = "book_create_form.html"

 success_url = "../books/"

The “update/2” URL route shall display the details of the

corresponding objects, giving an opportunity to change the values.

Submitting the form runs the UPDATE query in the background and

returns to the page showing the list of books.

 DeleteView

The DeleteView class is another generic base view. As the name implies,

its purpose is to delete a given object from the model. The selection of an

object for deletion is based on its primary key or a slug, as in the case of the

UpdateView. Additionally, Django lets you select the object to be deleted by

overriding the get_object() method.

Sometimes, using the primary key for the purpose of deleting objects

may not be convenient, especially when the primary key doesn’t exactly

tell you the serial number of the object in the collection. Instead, we would

like to identify the object with another attribute like author (refer to

Listing 4-32). Let us configure the URL route to pass the name of the author

as the path parameter and map it with the DeleteView.

CHAPTER 4 DJANGO TEMPLATES

120

from firstapp.views import BookDeleteView

urlpatterns += [path("delete/<author>", BookDeleteView.as_

view(), name="delete")]

The BookDeleteView class overrides the get_object() method to

select the object corresponding to the author’s name passed

from the URL.

Listing 4-32. DeleteView

from django.views.generic.edit import DeleteView

class BookDeleteView(DeleteView):

 model = Book

 template_name = "book_confirm_delete.html"

 success_url = "../books/"

 def get_object(self):

 return Book.objects.get(author=self.kwargs['author'])

We need to provide a template to be used by this view to perform this

operation. In the book_confirm_delete.html template (Listing 4-33), a POST

form asks for confirmation from the user, giving them the chance to cancel

the operation.

Listing 4-33. book_confirm_delete.html

<html>

<body>

 <form method="post">

 {% csrf_token %}

 <h2> {{ object.title }} By {{ object.author }}</h2>

 <p>Are you sure you want to delete ?</p>

CHAPTER 4 DJANGO TEMPLATES

121

 <input type="submit" value="Confirm"> <a href="../

list/"><input type="button" value="Cancel" />

</form>

</body>

</html>

When the delete operation is successfully executed, the browser is

directed to the view that lists out all the remaining books. Try entering the

URL as “delete/xyz” (where xyz is the author’s name) and check the behavior.

The form opens up with Confirm and Cancel buttons (Figure 4-7).

Hitting cancel takes the browser to the list page. Confirm page also

displays the list, but with the object deleted.

Figure 4-7. Template for DeleteView

Django also has a couple of generic views for two of the most

common requirements: a view that displays the attributes of a single

attribute (DetailView) and a view that renders the list of selected objects

(ListView).

 DetailView

Most web applications need a feature that displays one or more than one

attribute of a single object from the model, for example, the book() view

that we had used earlier. It displays the details of a book of a given id, read

from the path parameter in the URL. The DetailView class performs the

CHAPTER 4 DJANGO TEMPLATES

122

same task, in a much more elegant manner.

Once again, one essential attribute of the subclass of the DetailView

generic view class is the name of the model (the Book model). This class

also has a template_name_suffix property that defaults to _detail, which

means that it assumes that the name of the template that displays the

object details is model_detail.html. You may set any other string as the

suffix, or even specify any other template_name (as in Listing 4-34). We are

going to use the same template (book.html) as in the earlier example.

Listing 4-34. DetailView class

from django.views.generic.detail import DetailView

class BookDetailView(DetailView):

 model = Book

 template_name = "book.html"

The DetailView subclass identifies the object to be processed,

depending on the path parameter that is a primary key, or a slug field. We

shall pass the primary key (pk) as the path parameter in the URL route to

map the BookDetailView.

from firstapp.views import BookDetailView

urlpatterns += [path("show/<int:pk>", BookDetailView.as_view(),

name="show")]

Go to the browser (with the Django server running) and visit the

“show/2” URL route. The details of the book with primary key=2 will be

displayed.

 ListView

This view performs the role of the books() function – a function-based

view explained earlier. It collects the queryset comprising of all the objects

CHAPTER 4 DJANGO TEMPLATES

123

in a model. By default, a subclass of ListView class (Listing 4-35) looks

for a template set as the value of the template_name property (list_books.

html). The get_context_data() method builds the context required for

the template.

Listing 4-35. ListView class

from django.views.generic.list import ListView

class BookListView(ListView):

 model = Book

 template_name = "list_books.html"

 def get_context_data(self, **kwargs):

 books = Book.objects.all()

 context = {'books': books}

 return context

As always, wire up the as_view() method of the above view class to the

“list/” URL route by updating the app’s URLCONF module.

urlpatterns += [path("list/", BookListView.as_view(),

name="list")]

The template code (Listing 4-36) renders the object collection in an

HTML table, with each row having buttons displaying the detailed view,

the update view, and the delete view of the respective object when clicked.

Listing 4-36. list_books.html

<h2 style = "text-align: center;">List of Books</h2>

 <div style="overflow-x: auto;">

 <p><input type="button"

CHAPTER 4 DJANGO TEMPLATES

124

value="Add New" /></p>

 <table>

 <tr>

 <th>Title</th>

 <th>Author</th>

 <th>Price</th>

 <th>Details</th>

 <th>Update</th>

 <th>Delete</th>

 </tr>

 {% for book in books %}

 <tr>

 <td> {{ book.title }}</td>

 <td> {{ book.author }}</td>

 <td> {{ book.price}}</td>

 <td>

<input type="button" value="Detail" />

</td>

 <td>

<input type="button" value="Update" />

</td>

 <td>

<input type="button" value="Delete" />

</td>

 </tr>

 {% endfor %}

 </table>

 </div>

The URL http://localhost:8000/firstapp/list displays the list of books as

shown in Figure 4-8.

CHAPTER 4 DJANGO TEMPLATES

125

Figure 4-8. Table template for ListView

You can experiment with the functionality of the Add New, Update,

and Delete buttons. The HTML code shown above uses some CSS styling,

which you can find out in the source code in the book’s repository.

 Static Files

A web application framework such as Django mainly handles dynamic

content. However, many times the dynamic websites do need to serve ad-

ditional files such as images, JavaScript, or CSS. In Django, these files are

referred to as static files. The default project template installs the static-

files app (django.contrib.staticfiles), which manages the static files

in a Django project.

To use the static assets in a project, we should ensure that the following

configurations are in place.

CHAPTER 4 DJANGO TEMPLATES

126

If not already present in the settings.py module, set the STATIC_URL

parameter.

STATIC_URL = 'static/'

This tells Django to look for the static files in the app/static folder (a

folder named as static in the app’s package folder). However, your project

might also have certain static assets located outside the app folder. In

that case, you can define a list of directories (STATICFILES_DIRS) to be

searched by Django to locate the static files.

STATICFILES_DIRS = [

 BASE_DIR / "static",

]

When you are using the local Django server for running the application

(with the runserver command), it is in the DEBUG mode by default.

Django serves the static assets either from the app/static folder or the

folders in the STATICFILES_DIRS list.

When you decide to launch a Django-powered web application, the

development environment is not recommended. You need to host it on a

web server such as Apache, Nginx, etc., in the settings and define STATIC_

ROOT as the absolute path of a folder where all collected static files will

be placed. The normal practice is to designate the static folder under the

BASE_DIR (the parent project folder) for the purpose.

STATIC_ROOT = os.path.join(BASE_DIR, 'static')

At the time of deployment, make sure that this folder collects all

the static files in the app/static folder as well as from the folders in

STATICFILES_DIRS. This is ensured by running the management

command – collectstatic:

python manage.py collectstatic

CHAPTER 4 DJANGO TEMPLATES

127

For now, though, we are sticking with the development environment

(with DEBUG=True in the settings module). Hence, all the static files in

the examples under this topic are assumed to be placed in the firstapp/

static folder.

To begin with, load the static template tag from the staticfiles app.

{% load static %}

The {% static %} template tag takes the relative path to your static file

as an argument. In a normal HTML, we use the tag to display

an image:

On the other hand, to include the image stored in the static directory of

your app, you’d use

Going a step ahead, to render the image whose name has been passed

to a template in a context, you’d use

How do we include a CSS file? A .css file is also treated as a static asset,

hence placed in the static folder. In a normal HTML code, the syntax of

including a CSS file is

<link rel="stylesheet" type="text/css" href="styles.css" />

But here, we want to include it as a static file. Provide its relative path

to the {% static %} tag in the href attribute.

<link rel="stylesheet" type="text/css" href="{% static 'style.

css' %}">

CHAPTER 4 DJANGO TEMPLATES

128

Here is a simple example. We want to display the text in a <h2> tag,

such that it is placed horizontally in the center of the page. The required

styling is put in style.css (Listing 4-37), and the file is placed in the

static folder.

Listing 4-37. style.css

h2 {

 text-align: center;

 }

We shall refer to this stylesheet in the template code as in Listing 4-38.

Listing 4-38. Including css file

<body>

 {% load static %}

 <link rel="stylesheet" href="{% static 'style.css' %}">

 <h2>Hello World!</h2>

 </body>

When rendered, the test will follow the text alignment as horizontally

centered.

Files with JavaScript code are also static files for Django. Using the

same principle, we can include a .js file in a template. The JS scripts are

usually loaded in the <head> section of the HTML script:

<head>

 {% load static %}

 <script src="{% static 'script.js' %}"></script>

 </head>

Let us now implement the concepts of how to handle the static assets

with a few use cases.

CHAPTER 4 DJANGO TEMPLATES

129

 Image As Static Asset

We have already seen how the DetailView works. The BookDetailView example

explained earlier presents the attributes of a book with the given primary key.

Let us modify the structure of the Book model (refer to Listing 4-39) by adding a

CharField (coverimg) that stores a string containing the name of the image

file that represents the cover page of the book.

Listing 4-39. Book model modified

class Book(models.Model):

 id = models.AutoField(primary_key=True)

 title = models.CharField(max_length=50)

 author = models.CharField(max_length=50)

 price = models.IntegerField()

 publisher = models.CharField(max_length=50)

 ebook = models.BooleanField(default=True)

 coverimg = models.CharField(max_length=50)

 class Meta:

 db_table = "books"

Since we have modified the model structure, we must run the

migrations. Use the UpdateView to add the image names in the coverimg

field of each object.

We don’t need to make any changes to the code of the BookDetailView

class. We shall, however, modify its template – books.html.

We are interested in displaying the cover image alongside the detailed

view. The main <div> tag in the <body> section of the page has two

adjacent <div> tags. On the left, we use the tag to insert the static

image with the {{ book.coverimg }} variable, and inside the right

<div>, we output the other book attributes. Listing 4-40 gives the updated

template code.

CHAPTER 4 DJANGO TEMPLATES

130

Listing 4-40. books.html – display static image

<html>

<body>

 <div>

 <div style="float:left;width:45%;">

 {% load static %}

 </div>

 <div style="float:right;width:45%;" >

 <p>ID: {{ book.id }}</p>

 <p>Author: {{ book.author }}</p>

 <p>Price: {{ book.price}}</p>

 <p>Publisher: {{ book.publisher }}

</p>

 {% if book.ebook %}

 <p>Available as Ebook?: Yes</p>

 {% else %}

 <p>Available as Ebook?: No</p>

 {% endif %}

 <hr>

 </div>

 </div>

</body>

</html>

The detailed view of the book with ID=2 will appear as shown in

Figure 4-9.

CHAPTER 4 DJANGO TEMPLATES

131

Figure 4-9. Static image example

 CSS and JavaScript

The objective of the example in this section is to display a list of clickable

<div> tags, each populated by the {{ book.title }} variable. Below each

of these <div> tags, a hidden <div> tag is inserted that displays an unor-

dered list of the other attributes of the book. To make the title holder <div>

element clickable, a JavaScript function – myfunction() – is registered with

its onclick() event.

The myfunction() function receives the id of the <div> clicked, finds

its next sibling (which happens to be the one containing the attributes

such as author, price, etc.), and toggles its display style between block and

none (block will hide the element, and none will display it).

Save the following function in script.js (refer Listing 4-41) and put the

file in the static/ folder.

CHAPTER 4 DJANGO TEMPLATES

132

Listing 4-41. JavaScript function to hide/display the <div> tag

function myfunction(id) {

 var x=document.getElementById(id+id);

 if (x.style.display === "none")

 x.style.display = "block";

 else

 x.style.display = "none";

 }

We shall also use certain CSS rules for the <div> tag that holds the title.

These CSS rules are stored in the style.css file, which is inside the static/ folder.

Listing 4-42 shows how both the static assets are loaded in the <head>

section of the template.

Listing 4-42. Loading static assets

<head>

 <meta name="viewport" content="width=device-width,

initial-scale=1">

 {% load static %}

 <script src="{% static 'script.js' %}"></script>

 <link rel="stylesheet" href="{% static 'style.css' %}">

 </head>

Listing 4-43 shows the template code responsible for rendering the

clickable titles.

Listing 4-43. aboutbooks.html

 {% for book in books %}

 <div id = "item-{{ book.id }}" class="collapsible"

onclick="myfunction(this.id)">

 {{ book.title }}

CHAPTER 4 DJANGO TEMPLATES

133

 </div>

 <div style="display:none; font-size: 20px;">

 ID: {{ book.id }}

 Author: {{ book.author }}

 Price: {{ book.price}}

 Publisher: {{ book.publisher }}

 {% if book.ebook %}

 Available as Ebook?: Yes

 {% else %}

 Available as Ebook?: No

 {% endif %}

 </div>

 {% endfor %}

Lastly, we need a view that renders this template. Add an

aboutbooks() view (Listing 4-44).

Listing 4-44. aboutbooks view

def aboutbooks(request):

 books = Book.objects.all()

 context = {'books': books}

 return render(request, 'aboutbooks.html', context)

Register the “aboutbooks/” URL route mapped to it in the

urlpatterns, as we have done throughout this chapter.

Visit the “aboutbooks/” URL route, and it displays the list of titles

(Figure 4-10). Click on any of them to show/hide the corresponding

details.

CHAPTER 4 DJANGO TEMPLATES

134

Figure 4-10. Using JavaScript in Django template

Django’s collection of generic views includes a few others such as

FormView, ReDirectView, as well as a few generic date views. Discussion

of these views has been kept outside the scope of this book. Interested

readers can go through the official documentation of Django.

 Template Inheritance

As a Python developer, you must be familiar with the term “inheritance”

wherein a class extends the functionality of an existing class. Django

Template Language borrows a lot of terminology from Python – such as

variables, conditionals, and loops. Similarly, in Django, a template can also

be inherited, you’ll soon learn how.

CHAPTER 4 DJANGO TEMPLATES

135

Any web application is likely to have many web pages, some static ones

and others dynamically rendered templates. Obviously, you would like

each page to have a uniform appearance, i.e., similar color scheme, fonts,

same header and footer on each page, etc.

As a simple example, consider a Django application with three views:

home, about, and login – each rendering a template index.html, about.

html, and login.html. It is desired to have a navbar on each page with links

to others and a footer with a copyright message.

One way is to put the navbar code and the footer on each page, which

is obviously not ideal. A better approach would be to have the navbar code

in top.html and footer in bottom.html and use the {% include %} tag in

each of the templates.

 {% include %} Tag

The include tag simply loads the contents of one template into another.

The include keyword inside the tag is followed by a string representing the

template to be included:

{% include "template.html" %}

Normally, the templates in a Django application are placed in the

BASE_DIR/templates folder. The template to be included should also

be in this folder; however, its path can be mentioned relatively or in

absolute terms.

Assuming that the index() view function is supposed to render the

index.html template as shown in Listing 4-45.

Listing 4-45. index view

from django.shortcuts import render

def index(request):

 return render(request, 'index.html')

CHAPTER 4 DJANGO TEMPLATES

136

This page simply displays the text “This is Home page”. However, we

want a navbar and a footer to be displayed. For this, first create top.html

and bottom.html and then include them in index.html, as in Listing 4-46.

Listing 4-46. Top and bottom templates

#top.html

<nav>

 Home

 About

 Login

</nav>

#bottom.html

<footer>

 <p style="text-align: center;">© 2025 All rights

reserved.</p>

</footer>

Note that these two HTML files do not have the <html> and <body>

tags as they will be appearing in the HTML code for index.html (in which

these will be included).

While writing the HTML script of index.html, use the include tag to

load top.html and bottom.html before and after its actual contents.

The navbar is stylized by an appropriate CSS code, made available in

the style.css file placed in the static folder. The CSS code is not reproduced

here; you may find the same in the book’s repository.

Listing 4-47 shows the HTML script for index.html.

CHAPTER 4 DJANGO TEMPLATES

137

Listing 4-47. Including templates

{% load static %}

<!DOCTYPE html>

<html lang="en">

 <head>

 <link rel="stylesheet" type="text/css" href="{% static

'style.css' %}">

 </head>

 <body>

 {% include 'top.html' %}

 <h1 style="text-align: center;">This is Home page</h1>

 {% include 'bottom.html' %}

 </body>

</html>

Make sure that the routes for the views are properly configured in the

app’s urls.py file (Listing 4-48).

Listing 4-48. urls.py

from django.urls import path

from . import views

urlpatterns = [

 path("", views.index, name="home"),

 path("about/", views.about, name="about"),

 path("login/", views.login, name="login"),

]

If all the above actions are implemented correctly, the index template

should display a neat navbar and a footer as shown in Figure 4-11.

CHAPTER 4 DJANGO TEMPLATES

138

Figure 4-11. Including another template

You can go ahead and construct the other templates (about.html and

login.html) on similar lines. However, you need to include the header and

footer templates manually in each of them (and there may be many more

templates in a more comprehensive application). This in fact is against

DRY – one of the guiding principles of Django. This is where the other

approach of using template inheritance comes in.

If you recall the principle of inheritance in Python (or any object-

oriented language for that matter), the parent class defines one or more

methods, which the child class may (or may not) override. As a result,

when an object of the child class calls a method from its parent, it performs

the process as per its overridden functionality (or the functionality defined

in the parent class if it is not overridden). Inheritance in Django templates

works much the same way.

The two important template tags in this context are {% extends %} and

{% block %}.

CHAPTER 4 DJANGO TEMPLATES

139

 {% block %} Tag

To implement template inheritance, you need to design the parent tem-

plate that acts as a blueprint for the other templates. It will have certain

static or fixed content that will be rendered as it is in the child templates.

The navbar and the footer are such static parts. For the variable sections,

you need to define the blocks. The block – endblock construct defines

a block.

{% block block_name %}

. . .

{% endblock %}

For example, you define a base.html template to be used for

inheritance, and you define a title block such as

{% block title %}

Title

{% endblock %}

When another template inherits this base.html with the help of the

extends tag (explained next), it may or may not redefine the title block. The

block tag in the parent template indicates to the template engine that a

child template may override those portions of the template.

For our three-page application, we define the parent template as base.

html as in the code in Listing 4-49.

Listing 4-49. Parent template (base.html)

<!DOCTYPE html>

<html lang="en">

 <head>

 <title>

 {% block title %}

CHAPTER 4 DJANGO TEMPLATES

140

 Title

 {% endblock %}

 </title>

 </head>

 <body>

 {% include 'top.html' %}

 <div class="content">

 {% block content %}

 {% endblock %}

 </div>

 {% include 'bottom.html' %}

 </body>

</html>

Note that there are two blocks in the code – one for the title and

another for the content. The content block is empty. Hence, each child

template must provide its content for such a dummy block.

 {% extends %} Tag

The extends tag is used to establish inheritance between the child and the

parent template. In the index.html template, the statement

{% extends 'base.html' %}

tells the template engine that it extends (inherits) the base template.

When it is evaluated, the template engine will notice the block tags in base.

html and replace those blocks with the contents of the child template.

Hence, the index.html code will now look like that shown in

Listing 4-50.

CHAPTER 4 DJANGO TEMPLATES

141

Listing 4-50. Child template (index.html)

{% extends 'base.html' %}

{% block title %}

Home

{% endblock %}

{% block content %}

<h1 style="text-align: center;">This is Home page</h1>

{% endblock %}

Similarly, you can construct the about and login templates. Instead of

just a text, we shall populate the content block in the login.html template

with an HTML form (Listing 4-51).

Listing 4-51. Child template (login.html)

{% extends 'base.html' %}

{% block title %}Login{% endblock %}

{% block content %}

<div id="id01">

<form class="modal-content animate" action="" method="POST">

 {% csrf_token %}

 <div class="container">

 <label for="username">Username</label>

 <input type="text" placeholder="Enter Username"

name="username">

 <label for="password">Password</label>

 <input type="password" placeholder="Enter Password"

name="password">

CHAPTER 4 DJANGO TEMPLATES

142

 <input type="submit" value="Login">

 </div>

 </form>

</div>

{% endblock %}

The /login route thus renders a nicely stylized login form, shown

in Figure 4-12. The CSS code for this purpose is available in the code

repository.

Figure 4-12. Using template inheritance

CHAPTER 4 DJANGO TEMPLATES

143

Thus, this powerful feature of template inheritance lets you maintain

a consistent layout across your pages and makes it easier to update the

common layout in one place.

 Summary

Templates are the crucial component of Django’s architecture. This chap-

ter started with rendering a static template, and then we moved on to

learn how to inject a context in the template. We learned about different

template tags. Next, this chapter discussed the form templates – the HTML

form and the ModelForm.

A substantial part of this topic discusses the generic views and how to

build the templates for each generic view. We also learned about the static

assets and how to load images, CSS, and JavaScript in the template code.

Lastly, an important feature of Django – the template inheritance – has

also been explained with a suitable example.

This chapter, along with the previous three chapters, forms the core of

web development with Django. In the next chapter, we shall move one step

ahead and learn to add important features in a Django app, such as state

management, messaging, exception handling, etc.

CHAPTER 4 DJANGO TEMPLATES

145© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_5

CHAPTER 5

Django: Using
Databases
As we learned earlier in this book, Django’s ORM API is one of its standout

features with which the database interaction becomes much more

Pythonic, rather than having to execute raw SQL queries. However, it is

too tightly coupled with the other features of the Django framework – such

as the migrations, the admin interface, and more. There are other ORM

libraries for Python, notably SQLAlchemy, SQLObject, etc., which are far

more flexible. SQLAlchemy offers support for a wider range of databases

and works well with other frameworks like Flask. Hence, if someone wants

to port a Flask application to Django, is it possible to use SQLAlchemy with

Django, and if yes, how? We shall find an answer to this in this chapter.

The Django ORM provides the abstraction layer for the relational

(SQL-based) databases only. However, in today’s world of real-life

web applications, we need to handle a schema-less database such as

MongoDB. In this chapter, we shall also explore how to use MongoDB in a

Django application.

The topics to be discussed in this chapter include

• SQLAlchemy ORM

• Migrations with Alembic

• MongoDB

https://doi.org/10.1007/979-8-8688-1472-3_5#DOI

146

• PyMongo

• MongoEngine

• Djongo

 SQLAlchemy ORM

SQLAlchemy is a comprehensive SQL toolkit that has two components:

SQLAlchemy Core and SQLAlchemy ORM. The Core part executes

raw SQL queries with its own SQL Expression Language (SQEL). The

Expression Language lets you interact with a relational database through

the Python code. In a sense, it adds a bit of abstraction to the standard

SQL queries. The ORM part is built upon the Core part. In principle,

SQLAlchemy ORM is similar to the Django ORM we learned earlier in

the book, as it too presents a high-level abstraction. However, there’s a

significant difference in their approach, as we shall shortly come to know.

SQLAlchemy communicates with almost any type of database

(MySQL, Oracle, MS SQL Server, PostgreSQL, SQLite included) with a

dialect system based on the corresponding DB-API-compliant module.

As a result, if you intend to use a MySQL database, a Python module

like pymysql must be available. The engine object that powers both the

Expression Language constructs and the ORM uses the database-specific

dialect and the connection pool. Figure 5-1 represents various constituents

of SQLAlchemy.

CHAPTER 5 DJANGO: USING DATABASES

147

Figure 5-1. Schematic diagram of SQLAlchemy

SQLAlchemy adopts the data mapper pattern for implementing the

abstraction. Django ORM, on the other hand, follows the active record

pattern.

As we have seen, Django wraps the database table into a model class,

and its single instance is tied to a single row. An in-memory object is

added to the table as a row. Conversely, a single row is loaded as an object.

When any of the attributes are updated, it also updates the row.

In the data mapper pattern used by SQLAlchemy, the data is

transferred between a database table and its in-memory representation.

Here, both the states are kept independent of each other. In other words,

the object data is persisted only when it is explicitly committed.

CHAPTER 5 DJANGO: USING DATABASES

148

Let us start by installing SQLAlchemy in the current Django virtual

environment with the PIP utility.

(djenv) C:\workspace>pip3 install sqlalchemy

This will install the current version of the SQLAlchemy package, which

is 2.0.29, as can be confirmed with the __version__ attribute.

>>> import sqlalchemy

>>> sqlalchemy.__version__

'2.0.29'

The latest version of SQLAlchemy is compliant with the features of

modern Python like type annotations and asyncio.

 Engine

As you must have understood from the above figure, you have to obtain

the engine object as the first step to be able to use the ORM API. The

Engine provides the connection to the database to be used and holds

onto the connections inside of a connection pool for fast reuse. The

create_engine() function that returns the engine object is called with the

following syntax:

from sqlalchemy import create_engine

engine = create_engine(URL, **kwargs)

The first positional parameter is URL, which is a string indicating the

database dialect and other connection credentials required, such as the

username and the password.

SQLite is a file-based database, and Python’s standard library has built-

in support for it in the form of sqlite3 module. Hence, the URL parameter

that returns the engine object for an in-memory SQLite database is

engine=create_engine('sqlite:///:memory:')

CHAPTER 5 DJANGO: USING DATABASES

149

You can use an additional argument – echo=True – to the above

constructor, which shows the equivalent SQL queries emitted by

SQLAlchemy on the console.

You would prefer a persistent, file-based database, in which case the

URL should be given as

engine =create_engine('sqlite:///db.sqlite3', echo=True)

For the other database variants, the URL parameter must include its

dialect (database + module) in addition to the connection credentials. For

example, if you intend to use a MySQL database and you have installed the

pymysql module, the URL takes the following format:

engine = create_engine('mysql+pymysql://root@localhost/

mydatabase')

The above statement refers to the database named mydatabase on the

MySQL server installed on the localhost and has root as the username with

no password set.

Additional keyword arguments may be given; they may be specific to

the engine, the dialect, as well as the connection pool.

Just to give another example, the URL for PostgreSQL database using

the psycopg2 module looks like

engine = create_engine("postgresql+psycopg2://user:password@

localhost/dbname")

 Table in SQLAlchemy Core

While using SQLAlchemy Core, you need to declare a Table object to be

mapped with a corresponding database table, define its Column attributes,

and add its metadata in a collection.

CHAPTER 5 DJANGO: USING DATABASES

150

You need to declare a MetaData object first:

from sqlalchemy import MetaData

metadata = MetaData()

We can now declare a Table object as per the prescribed syntax:

from sqlalchemy import Table, Column, Integer, String

mytable = Table(

 dbtable, metadata,

 Column(col1, type, constraints),

 Column(col2, type, constraints),

 . . .,

)

The first parameter is the name of the table in the database. Each field

is an object of Column class, for which its name, type, and other optional

constraints such as primary key, secondary key, etc., are specified.

Let us create a SQLAlchemy table here that reflects the structure of the

Books tabls used in the earlier chapter.

from sqlalchemy import MetaData

metadata = MetaData()

from sqlalchemy import Table, Column, Integer, String

book = Table(

 "Books", metadata,

 Column("id", Integer, primary_key=True),

 Column("title", String, nullable=False),

 Column("author", String, nullable=False),

 Column("price", Integer),

 Column("publisher", String)

)

CHAPTER 5 DJANGO: USING DATABASES

151

There may be multiple Table objects in your application; the details

of each of them are saved in the metadata object. Whenever its create_

all() method is called, SQLAlchemy emits the CREATE TABLE query for

each Table.

metadata.create_all(engine)

Here is the console log:

INFO sqlalchemy.engine.Engine BEGIN (implicit)

INFO sqlalchemy.engine.Engine PRAGMA main.table_info("Books")

INFO sqlalchemy.engine.Engine [raw sql] ()

INFO sqlalchemy.engine.Engine PRAGMA temp.table_info("Books")

INFO sqlalchemy.engine.Engine [raw sql] ()

INFO sqlalchemy.engine.Engine

CREATE TABLE "Books" (

 id INTEGER NOT NULL,

 title VARCHAR NOT NULL,

 author VARCHAR NOT NULL,

 price INTEGER,

 publisher VARCHAR,

 PRIMARY KEY (id)

)

INFO sqlalchemy.engine.Engine [no key 0.00224s] ()

INFO sqlalchemy.engine.Engine COMMIT

 Model

Conceptually, the model in SQLAlchemy serves the same purpose as the

model in Django ORM. It is a Python class whose attributes are mapped

with the fields of a table in the relational database.

CHAPTER 5 DJANGO: USING DATABASES

152

The SQLAlchemy ORM API provides a façade around this complex

procedure in the form of a metaclass named the DeclarativeBase

class. A subclass of DeclarativeBase acts as a metadata container for all

the models.

from sqlalchemy.orm import DeclarativeBase

class Base(DeclarativeBase):

 pass

A model is a class that inherits the Base class and establishes its

mapping with a database table through its __tablename__ property.

from sqlalchemy.orm import mapped_column

class model(Base):

 __tablename__ = dbtable

 Col1 = mapped_column(type, constraints)

 Col2 = mapped_column(type, constraints)

 . . .

We use the mapped_column, an ORM-aware construct, to indicate an

attribute that’s mapped to a Core Column object.

Let us declare a SQLAlchemy ORM model that reflects the structure of

the books table, used in the earlier examples. Add the following code in the

models.py module in the app folder:

from sqlalchemy import Column, Integer, String

class Base(DeclarativeBase):

 pass

class Book(Base):

 __tablename__ = 'Books'

 id = mapped_column(Integer, primary_key=True, index=True)

 title = mapped_column(String(256))

CHAPTER 5 DJANGO: USING DATABASES

153

 author = mapped_column(String(256))

 price = mapped_column(Integer)

 publisher = mapped_column(String(256))

Since the Book class is inherited from the DeclarativeBase, which

really is a metadata container, calling the create_all() method executes

the CREATE TABLE BOOKS query (as we saw in the case of a Table object):

Base.metadata.create_all(engine)

As the echo parameter is set to True in the call to the create_engine()

function, the console log shows the CREATE TABLE query being emitted,

exactly the same as in the earlier case.

 Session

How does SQLAlchemy synchronize the model with the SQL table? This is

where the Session plays an important role. At a lower level of interaction,

we open a connection with the database and execute SQL queries

that perform CRUD operations (as we discussed in Chapter 3, section

“DB-API”). As mentioned earlier, Django ORM uses the active record

pattern, and hence, the effect of create(), update(), and delete()

methods from the Manager class gets reflected in the database instantly.

SQLAlchemy ORM uses the data mapper pattern, which needs an explicit

instruction to add/update/delete a row corresponding to the object. The

Session object performs exactly this role.

In the general sense of its meaning, the term “session” refers to the

extent for which any interaction takes place. In the context of a database,

the session starts when a connection is established and goes on till the

connection is closed. In between, the user performs database-related

actions – commonly known as CRUD operations.

CHAPTER 5 DJANGO: USING DATABASES

154

In SQLAlchemy, you start the session either by creating an instance of

Session class or with the help of the SessionManager factory. Any which

way, the Session object requests for a connection resource from the Engine

referring to the database in use.

Here’s how we use the SessionManager factory:

from sqlalchemy import create_engine

engine = create_engine('sqlite:///db.sqlite3', echo=True)

from sqlalchemy.orm import sessionmaker

session = sessionmaker(bind=engine)

You may prefer to declare an object of Session class:

from sqlalchemy.orm import Session

session = Session()

This object is really a “holding zone” for all the ORM objects. Once you

initialize an object of a model (subclass of DeclarativeBase), it has to be

added to the session for it to be subsequently committed persistently to

the database. On the other hand, you populate an ORM object with a row

from the database table for it to be eventually updated or deleted.

We have declared a Book model earlier. Let us initialize a Book object,

add it to the SQLAlchemy session, and commit the session.

b1=Book(id=1, title="Decoupled Django", author="Gagliardi",

price=3874, publisher="Apress")

session.add(b1)

session.commit()

session.close()

Python’s preferred approach is to use the context manager that closes

the session object at the end of the with: block. Also, the background

interaction with the database is given the protection of Python’s exception

CHAPTER 5 DJANGO: USING DATABASES

155

handling mechanism by placing the code inside the try: block. Here’s a

Django view function that adds a new Book object:

def addbook(request):

 with Session(engine) as session:

 b1=Book(id=1, title="Decoupled Django",

author="Gagliardi", price=3874, publisher="Apress")

 session.add(b1)

 session.commit()

 return HttpResponse("New Book added")

A more user-friendly approach would obviously be to get the object

data from the user as an HTML form input and parse it to the model

object, and then to be added to the session.

def addbook(request):

 if request.method=="POST":

 with Session(engine) as session:

 data = request.POST

 ttl = data["title"]

 auth = data["author"]

 price = data["price"]

 pub = data["publisher"]

 b1 = Book(title=ttl, author=auth, price=price,

publisher=pub)

 session.add(b1)

 session.commit()

 return HttpResponse("Record added")

 context={}

 return render(request, "bookform.html", context)

CHAPTER 5 DJANGO: USING DATABASES

156

However, we cannot use Django’s Form API (including the ModelForm)

to render an HTML form that is automatically mapped to the model

structure, as Django’s Form is tied with the Django ORM only. Instead,

you may look to use other server-side Form libraries (such as WTForms)

as a replacement for Django Form. The discussion on WTForms is not

a part of this book’s scope. Interested readers may refer to the official

documentation (https://wtforms.readthedocs.io/) and other resources

on the Internet.

 Alembic

As we learned earlier (in Chapter 3, section “Run Migrations”), the

propagation of the initial definition of a model to the corresponding

table in the database, as well as any subsequent changes in its structure,

is handled by Django’s migration-related commands. The migration

mechanism also serves as an excellent tool for version control. Even

though it is very easy to use, Django’s migration is integrated tightly with

Django’s ORM. As such, it cannot be used if you intend to use any other

ORM library (such as SQLAlchemy) apart from Django’s own ORM.

Fortunately, SQLAlchemy has its own migration API called Alembic.

Alembic is much more flexible as compared to Django migrations.

Since SQLAlchemy supports a larger number of relational databases

as compared to Django, the use of Alembic is essential if you intend to

employ the SQLAlchemy ORM in your Django project.

In this section, we shall learn how to manage migrations of

SQLAlchemy models with Alembic.

Let us start by installing Alembic in the same Django environment, in

which we have earlier installed SQLAlchemy:

(djenv) C:\workspace>pip3 install alembic

CHAPTER 5 DJANGO: USING DATABASES

https://wtforms.readthedocs.io/

157

From inside your Django project folder, run the following command to

initialize Alembic:

alembic init alembic

This command places the file alembic.ini in the project directory

(where the manage.py script, the app folder, and the SQLite database

are present). Alembic uses different parameters initialized in this file to

manage the migrations. Among others, the sqlalchemy_url parameter

points to the database to be migrated. Since we are using the SQLite

database, we need to edit the alembic.ini file and assign the database

URL to this parameter:

sqlalchemy.url = sqlite:///./db.sqlite3

For other databases (such as MySQL or PostgreSQL), the parameter

may be set in the following form:

sqlalchemy.url = driver://user:pass@localhost/dbname

The init command also creates a folder alembic in the same path, with

the files env.py and script.py.mako, along with a README file in it.

script.py.mako is a Mako template file that is used to generate

new migration scripts. Every new migration script is placed inside the

versions folder.

To create a new database migration with the alembic revision

command, it is recommended to use an optional -m flag to add a

descriptive message:

alembic revision -m "create Book Table"

A new migration script will be created in the alembic/versions directory.

Alembic assigns the file name to the migration script as a combination of a

unique GUID-based revision number and the comment text. For example,

the migration script could be named 4a525b80c4c9_create_book_table.

py. Figure 5-2 shows how typically the alembic folder populates.

CHAPTER 5 DJANGO: USING DATABASES

158

Figure 5-2. Schematic diagram of SQLAlchemy

To propagate the model definitions from the migration script to the

database, use the upgrade command (this serves the same purpose as the

migrate command in Django ORM):

alembic upgrade head

Here, head refers to the latest migration script. The downgrade

command reverts the database schema to its earlier version if one or more

models or columns are dropped.

Alembic can also auto-generate migration scripts based on the

current definitions of your SQLAlchemy models. To auto-generate, use the

autogeneration feature; you need to edit the env.py script in the alembic

folder and add the following statements to it:

from myapp.models import Book

target_metadata = [Book.metadata]

Use the following command:

alembic revision --autogenerate -m "Create Book Table"

alembic upgrade head

CHAPTER 5 DJANGO: USING DATABASES

159

On the command prompt terminal, the following log is displayed:

INFO [alembic.runtime.migration] Context impl SQLiteImpl.

INFO [alembic.runtime.migration] Will assume non-

transactional DDL.

INFO [alembic.runtime.migration] Running upgrade ->

4a525b80c4c9, Create Book Table

You can now open the database and confirm if the Book table has been

created. Alembic identifies the first migration script as base.

Let us modify the Book model by adding a new attribute and generate

a new migration script. The Book model now looks like the following:

from sqlalchemy import Column, Integer, String

class Base(DeclarativeBase):

 pass

class Book(Base):

 __tablename__ = 'Books'

 id = mapped_column(Integer, primary_key=True, index=True)

 title = Column(String)

 author = mapped_column(String(256))

 price = mapped_column(Integer)

 publisher = mapped_column(String(256))

 year_of_pub = mapped_column(Integer)

First, find out if the change necessitates a new migration script by

running the alembic check command:

alembic check

New upgrade operations detected:[('add_column', None, 'Books',

Column('year_of_pub', Integer(), table=<Books>))]

CHAPTER 5 DJANGO: USING DATABASES

160

Create a new migration script with the auto-generated command (add

a suitable message):

alembic revision --autogenerate -m "add year field"

The new script with a unique revision number will be stored in the

versions directory (e.g., 7bd04b7040cf_add_year_field.py), which will now

be treated as head while running the upgrade command:

alembic upgrade head

We can also view the history of the migrations generated:

alembic history

4a525b80c4c9 -> 7bd04b7040cf (head), add year field

<base> -> 4a525b80c4c9, Create Book Table

To fall back to the status of the database to any of the earlier revisions,

you can use the downgrade command. Our database has been updated

to the latest migration script referred to as head. It can be reverted to

a specific revision number. You can also perform relative upgrades or

downgrades. To revert to the state of Book table before the year_of_pub

column is added, use the following command:

alembic downgrade -1

INFO [alembic.runtime.migration] Context impl SQLiteImpl.

INFO [alembic.runtime.migration] Will assume non-

transactional DDL.

INFO [alembic.runtime.migration] Running downgrade

7bd04b7040cf -> 4a525b80c4c9, add year field

Advantage of SQLAlchemy notwithstanding, there are a lot of

limitations of using it with Django. As mentioned in the very beginning

of this book, Django is an opinionated framework, not flexible enough to

let the user choose the tools other than those bundled with the Django

package. The models used in the apps bundled with Django (such as the

CHAPTER 5 DJANGO: USING DATABASES

161

admin app, the auth app, etc.) can be propagated only with the databases

officially supported by Django (MySQL, Oracle, PostgreSQL, and SQLite).

Hence, even if you choose to use other databases with the SQLAlchemy

support, the built-in apps won’t work with them.

There is an experimental django-sorcery package that does support

the admin interface, but it is not compatible with the latest version of

Django as well as SQLAlchemy.

 Advent of NOSQL Databases

Relational databases (the likes of Oracle, SQL Server, MySQL, SQLite, etc.)

are around for over seven decades and are still widely employed in all

applications – big or small. However, they seem to fall short when it comes

to handling flexible data models of modern real-time applications. The

NOSQL databases came on the horizon in the early 2000s and since then

are being increasingly used.

One of the main limitations of relational databases is that their design

is based on tables having fixed schemas. NOSQL databases, on the other

hand, are schema-less. This makes them more scalable as compared to

SQL-based databases. The distributed architecture of NOSQL databases

makes them more available and hence suitable for applications that need

to handle huge amounts of data.

MongoDB is the most widely used NOSQL database. It is a document

store database. There are other NOSQL databases as well – such as

Amazon DynamoDB (a key-value store database), Cassandra (a wide-

column store database), and others. In this chapter, we shall discuss how

the MongoDB database is used as a database backend for Django-powered

applications.

CHAPTER 5 DJANGO: USING DATABASES

162

 MongoDB

MongoDB is an open source, cross-platform, schema-less (NOSQL),

document store (also called document-oriented) database. MongoDB

has been developed by MongoDB Inc. (previously 10gen), an American

software company in 2009. Its current stable version is 7.0.11.

A MongoDB database consists of one or more Collections. Each

Collection is a document store. It is a collection of one or more

Documents. Each Document is a JSON-like representation of field

and value pairs. To be precise, MongoDB uses a Binary JSON (BSON)

representation – a variant of JSON. Although a Collection contains

Documents, each Document can have a variable number of field-value

pairs. That’s what schema-less means.

Compare this with a typical relational database that has one or more

tables each with a fixed schema or structure. Each row in the table is a

record with one or more columns as defined in the schema.

Thus, a Collection in MongoDB is analogous to the table in the relational

database, and each BSON document to the record. The following figure

offers a good comparison between the relational database and MongoDB.

 Installation

You can use MongoDB mainly in two ways. One is to install the software

locally on your machine, and the other is to use MongoDB Atlas.

 Local Deployment

For local installation, MongoDB is available in two editions: Community

edition and Enterprise edition. Both have the same developer features,

but the Enterprise version provides additional operational and security

features as well as advanced tools such as Ops Manager, BI Connector, and

Enterprise Operator for Kubernetes.

CHAPTER 5 DJANGO: USING DATABASES

163

To install MongoDB locally, download the installer software that is

appropriate for your operating system from https://www.mongodb.com/

try/download/community and follow the installation instructions.

While on a Windows machine, install MongoDB in the D:\MongoDB

directory. Make sure that you also create a \data\db directory. Start the

MongoDB server by running the mongod command:

D:\Mongodb\bin>mongod

If MongoDB has been properly installed, you should get the following

message in the console log:

{"t":{"$date":"2024-06-16T00:23:36.251+05:30"},"s":

"I", "c":"CONTROL", "id":4615611, "ctx":"initandlisten","msg"

:"MongoDB starting","attr":{"pid":18852,"port":27017,"dbPath":

"D:/data/db/","architecture":"64-bit","host":"GNVBGL3"}}

This indicates that the MongoDB server is listening at port 27017 of the

localhost.

 Atlas

Another way to use MongoDB is using its cloud-based service called

MongoDB Atlas. You can easily deploy, operate, and scale MongoDB

with Atlas.

Sign up and sign in to MongoDB to begin with by following the link

https://account.mongodb.com/account/login, and create a free cluster

with the provider of your choice.

Add your current IP address in the IP Access List (Figure 5-3).

CHAPTER 5 DJANGO: USING DATABASES

https://www.mongodb.com/try/download/community
https://www.mongodb.com/try/download/community
https://account.mongodb.com/account/login

164

Figure 5-3. Network access whitelist

 MongoDB Shell

You can interact with the server with the MongoDB Shell (similar to

MySQL Shell, or SQL Plus for Oracle). You need to download and install

Mongo Shell from https://www.mongodb.com/try/download/shell. Open

another command terminal in its installation directory, and run the fol-

lowing command:

C:\Users\mlath\mongosh>mongosh

Current Mongosh Log ID: 666de3e6149d0383b990defd

Connecting to: mongodb://127.0.0.1:27017/?directConnec

tion=true&serverSelectionTimeoutMS=2000&appName=mongosh+2.2.9

Using MongoDB: 7.0.4

Using Mongosh: 2.2.9

. . . .

test>

You can now perform the CRUD operations on a local database from

within the MongoDB Shell.

To connect with the cluster with the MongoDB Shell, obtain the con-

nection string as shown in Figure 5-4.

CHAPTER 5 DJANGO: USING DATABASES

https://www.mongodb.com/try/download/shell

165

Figure 5-4. Atlas connection string

Paste the connection string into the command terminal. Enter the

password when prompted.

C:\Users\mlath\mongosh>mongosh "mongodb+srv://cluster0.oh20x8g.

mongodb.net/" --apiVersion 1 --username mlathkar

Enter password: ********

Current Mongosh Log ID: 666dea805e7cda09d090defd

Connecting to: mongodb+srv://<credentials>@cluster0.

oh20x8g.mongodb.net/?appName=mongosh+2.2.9

Using MongoDB: 7.0.11 (API Version 1)

Using Mongosh: 2.2.9

. . .

Atlas atlas-13zoim-shard-0 [primary] test>

You can execute MongoDB commands for CRUD operations; they are

similar to SQL queries.

CHAPTER 5 DJANGO: USING DATABASES

166

For instance, to create a new database:

test> use mydb;

switched to db mydb

A Collection is implicitly created when you insert a document. The

insertOne() function adds a document in the collection.

mydb> db.books.insertOne({id:1, title: "Decoupled Django",

author: "Gagliardi", price: 3874, publisher: "Apress"});

{

 acknowledged: true,

 insertedId: ObjectId('666ea2c7e1329c760790defe')

}

mydb>

 Compass

MongoDB Compass is a free, GUI tool with which you can conveniently

interact with MongoDB databases, instead of using the command-line

MongoDB Shell.

The MongoDB server installer usually offers to install Compass while

setting up the server, although it can be installed separately also.

Invoke the Compass app (ensure that either the local MongoDB server

is running or you are connected with the Atlas cluster). Use the URL

mongodb://localhost:27017 (as in the Figure 5-5) to connect with the

locally deployed MongoDB server.

CHAPTER 5 DJANGO: USING DATABASES

167

Figure 5-5. Connect MongoDB Compass to the local
MongoDB server

CHAPTER 5 DJANGO: USING DATABASES

168

Refer Figure 5-6 to open the required database and insert documents

using the interface.

Figure 5-6. Add a document

You can also work with the Atlas cluster. Fetch the connection string

(Figure 5-7) for Compass from the online interface.

CHAPTER 5 DJANGO: USING DATABASES

169

Figure 5-7. Connection string of the Atlas cluster

As shown in Figure 5-8, use the connection string for connection in the

Compass app (replace the asterisks with your password).

CHAPTER 5 DJANGO: USING DATABASES

170

Figure 5-8. Connect MongoDB Compass to Atlas

However, we would rather work with the MongoDB database from

within a Django app, instead of the MongoDB Shell or the Compass app.

You can use one of the following three approaches to use MongoDB as

a database backend with Django:

PyMongo: PyMongo is a Python package, developed

by MongoDB as the official driver for interacting

with Python in general and hence with Django.

MongoEngine: MongoEngine is a Python library

that acts as an Object-Document Mapper with

MongoDB. It is similar to the Django ORM.

Djongo: Djongo acts as a transpiler (layer of

translation) between Django’s ORM API and

MongoDB’s own queries.

CHAPTER 5 DJANGO: USING DATABASES

171

 PyMongo

Start by installing the PyMongo package from Python’s standard package

library. Certain additional libraries are also recommended to be installed

alongside.

pip install pymongo[snappy,gssapi,srv,tls]

As mentioned, PyMongo itself is MongoDB’s official Python driver. The

Generic Security Service Application Program Interface (GSSAPI) is an ap-

plication programming interface for programs to access security services.

This also installs python-snappy, which is a Python binding for the snappy

compression library from Google. python-libtls library provides a high-

level interface for secure network communication.

It is also recommended to install dnspython, a DNS toolkit for Python,

needed especially when working with MongoDB Atlas, where you need to

use mongodb+srv:// URIs.

pip install dnspython

Set up a typical Django project with the startproject command, cre-

ate a Django app (myapp) with the startapp command, and include it in

the INSTALLED_APPS list, as we have done before. You should also register

the URLs of myapp in the project’s URLCONF as done earlier.

An object of MongoClient class in PyMongo provides the handle to

your MongoDB instance. To set up the connection, you need the hostname,

port number, and other optional parameters if needed.

from pymongo import MongoClient

client = MongoClient(host='localhost', port=27017)

To create a new MongoDB database on the server, use the newdb

property:

db=client.newdb

CHAPTER 5 DJANGO: USING DATABASES

172

We can now refer to this database with the db object. Create a Books

collection in this database with the following statement:

col=db['books']

Put all this code in the models.py module in the app’s package folder.

from pymongo import MongoClient

client = MongoClient()

db=client.newdb

col=db['books']

 Insert Document

Let us write a simple view that uses the collection object and adds a book

document with its insert_one() method. The document is a dict object,

which PyMongo converts in a BSON document.

from django.shortcuts import render

Create your views here.

from django.http import HttpResponse

from .models import col

def addbook(request):

 b1 = {"id":1, "title": "Decoupled Django",

"author":"Gagliardi", "price":3874, "publisher":"Apress"}

 col.insert_one(b1)

 return HttpResponse("Document added")

To be more generic, and more user-friendly, render a template that

presents a form for the user to fill. The form data is then used to insert a

new document. Modify the addbook() function accordingly.

CHAPTER 5 DJANGO: USING DATABASES

173

def addbook(request):

 if request.method=="POST":

 data = request.POST

 id = data["id"]

 ttl = data["title"]

 auth = data["author"]

 price = data["price"]

 pub = data["publisher"]

 book = {"id":id, "title": ttl, "author":auth,

"price":price, "publisher":pub}

 col.insert_one(book)

 return HttpResponse("Document Added")

 else:

 return render(request, "book.html", {})

 Retrieval

You can call the find_one() or find() method of the Collection object to

retrieve one or all the documents satisfying the filter criteria:

col.find(filter): Retrieves all the documents from

the database

col.find_one(filter): Retrieves a single document

from the database

Here, filter is a dictionary specifying the query to be performed.

PyMongo provides a number of filter operators to be used in these

methods:

$eq: Whether a field is equal to a specified value.

Equivalent to ==

$gt: Checks if a field’s value is greater than a speci-

fied value. Equivalent to >

CHAPTER 5 DJANGO: USING DATABASES

174

$gte: Corresponds to >= operator

$lt: Matches documents where a field’s value is less

than a specified value. Corresponds to < operator

$lte: Equivalent of the <= operator

$ne: PyMongo’s equivalent of the != operator

$and: Combines multiple filter expressions using

logical AND

$or: Combines multiple filter expressions using

logical OR

$in: Emulates Python’s IN operator

$exists: Checks if a field exists in a document (true)

or not (false)

Let us implement some of these operators in the view functions. The

books() view retrieves all the books with the price greater than a specified

number in the books collection.

def books(request, price):

 books = col.find({"price": {"$gt": price}})

 lst=[]

 for book in books:

 lst+="<h2>Title: {} \t Author: {} \t Price: {}</h2>".

format(book['title'], book['author'], book['price'])

 return HttpResponse(lst)

The find() method returns a list of dict objects, each correspond-

ing to one document. Try using the URL http://localhost:8000/myapp/

books/3500. You can use a suitable template in earlier chapters to render

the list of books in an HTML table instead.

CHAPTER 5 DJANGO: USING DATABASES

175

Similarly, the getbook() view function retrieves the document whose

ID is passed as the path parameter.

def getbook(request, id):

 book = col.find_one({"id":id})

 return HttpResponse("<h2>Title: {} \t Author: {} \t

Price: {}</h2>".format(book['title'], book['author'],

book['price']))

PyMongo also supports update operation on the document, with the

update_one() and update_many() methods. These methods need filter

criteria and the dictionary of updated values of the required fields. For

example, the statement

col.update_one({'id': 1}, {'$set': {'price': 3000}})

updates the price of the book whose ID is 1.

Similarly, the delete_one() method removes a document that satisfies

the given filter criteria. This statement deletes a book authored by Alchin

from the books collection.

col.delete_one({'$author': 'Alchin'})

You can add the appropriate view functions to perform the update and

delete operations. Have a look at the code in this book’s code repository

if needed.

You need to ensure that the views are properly matched with the

URL routes in the urlpatterns. For reference, the code for urls.py is

listed here:

from django.urls import path, include

from . import views

CHAPTER 5 DJANGO: USING DATABASES

176

urlpatterns = [

 path('',views.index,name='index'),

 path('addbook/', views.addbook,

name='addbook'),

 path("getbook/<id>/", views.getbook,

name="getbook"),

 path("books/<int:price>", views.books,

name="books"),

]

This is, of course, a very brief account of the functionality of PyMongo.

You can refer to its official documentation to enhance your Django appli-

cation further.

 MongoEngine

The Django ORM API that you learned earlier presents a layer of abstrac-

tion, mapping Python classes with the corresponding tables (relations) in

Django-supported relational databases instead of writing raw SQL queries.

SQLAlchemy does the same with all types of relational database – includ-

ing those not officially supported by Django. MongoEngine is the equiva-

lent of Python ORMs for MongoDB databases. Since a MongoDB database

is a collection of documents (and not relations), it is appropriately known

as an ODM (Object-Document Mapper).

MongoEngine is an open source Python package built on top of

PyMongo driver. Obviously it is one of the dependencies for MongoEngine

installation.

While in the current Django environment folder, install

MongoEngine with

pip install mongoengine

CHAPTER 5 DJANGO: USING DATABASES

177

The current version of MongoEngine is “0.28.2”, compatible with the

latest versions of Python.

 Document Class

As mentioned earlier, a document in MongoDB is roughly equivalent to

a row in a relational database. Though a row (stored in a table) follows a

predefined schema very strictly, MongoDB doesn’t enforce a schema on

the documents in a collection.

Having said that, MongoEngine does allow you to define a schema

for the documents. If needed, the document schema can be dynamically

modified. You’ll soon see how to do it.

The document schema is defined as a class that inherits the Document

class in MongoEngine. You can think of the Document as an equiva-

lent of Model in Django ORM, or DeclarativeBase in SQLAlchemy.

MongoEngine provides different Field types (IntField, StringField, etc.)

similar to the Field types in Django ORM and SQLAlchemy. Field objects

are the attributes of the Document class.

Here is a declaration of Book class that is a subclass of Document:

from mongoengine import *

class Book(Document):

 title = StringField(max_length=50)

 author = StringField(max_length=50)

 price = IntField()

 publisher = StringField(max_length=50)

If you remember, MongoDB automatically allocates a unique _id, a

field of the ObjectId type to each document that acts as a primary key. If

you want, you can manage the primary key by yourself by specifying pri-

mary_key=True as a parameter to the required field.

CHAPTER 5 DJANGO: USING DATABASES

178

class Book(Document):

 bookId = IntField(primary_key=True)

 title = StringField(max_length=50)

 author = StringField(max_length=50)

 price = IntField()

 publisher = StringField(max_length=50)

When the first document is saved, MongoDB creates the collection,

whose name is the same as that of the Document class. However, you can

change it. Add a meta attribute on your document, and set collection to the

name of the collection that you want your document class to use.

class Book(Document):

 bookId = IntField(primary_key=True)

 title = StringField(max_length=50)

 author = StringField(max_length=50)

 price = IntField()

 publisher = StringField(max_length=50)

 meta = {'collection': 'Books'}

 Connection

To interact with MongoDB, you need to establish a connection with it. To

connect your application with a local MongoDB server running on the

localhost, use the connect() function passing the name of the database as

an argument.

from mongoengine import connect

connect('mydb')

MongoEngine assumes that the mongod instance is listening to port

27017 and running on localhost. To provide the arguments explicitly, use

the following variation:

connect('mydb', host='127.0.0.1', port=27017)

CHAPTER 5 DJANGO: USING DATABASES

179

A more general form of the connect() function is

connection = connect(db, username, password, host)

You can connect to the Atlas cluster also. Obtain the required connec-

tion string from the running cluster as done earlier.

connection = connect(db='mydb',

 username='*****',

 password='*****', host='mongodb+srv://

username:password@cluster0.oh20x8g.mongodb.

net/?retryWrites=true&w=majority')

Once the connection is established, you can simply construct a

Document object and call its save() method.

doc = Book(title="Decoupled Django", author=" Gagliardi ",

price=3874, publisher="Apress")

doc.save()

This results in the Books collection with a Book document in it, created

inside the mydb database on the currently running MongoDB server (or

the Atlas cluster if your connection points to it). You can verify it with the

MongoDB Compass app.

Using MongoEngine in a Django application is fairly straightforward.

Put the Document class (Book) in the models.py module.

from mongoengine import *

con = connect('mydb')

class Book(Document):

 title = StringField(max_length=50)

 author = StringField(max_length=50)

 price = IntField()

 publisher = StringField(max_length=50)

 meta = {'collection': 'Books'}

CHAPTER 5 DJANGO: USING DATABASES

180

Define a view function that retrieves the data from an HTML form and

uses it to populate the Book object. Call the save() method to cause the

document to be persistently saved in the database.

from django.shortcuts import render

def addbook(request):

 if request.method=="POST":

 data = request.POST

 title = data["title"]

 author = data["author"]

 price = data["price"]

 publisher = data["publisher"]

 doc = Book(title = title, author = author, price =

price, publisher = publisher)

 doc.save()

 return HttpResponse("Document Successfully Added")

 else:

 return render(request, "book.html", {})

To fetch all the documents in the collection, use the objects property. It

returns a QuerySet.

documents = Book.objects

To refine the documents QuerySet, you can apply filtering criteria.

Instead of the traditional comparison operators, MongoEngine defines its

own query operators that are similar to what we used with PyMongo, with

a slight change in the syntax. PyMongo operators have a $ prefix (e.g., $lte

for less than or equal to). In MongoEngine, on the other hand, double un-

derscores prefix the operator (e.g., __lte). To obtain the books with price

greater than 3500, the statement would be

documents = Book.objects(price__gt=3500)

CHAPTER 5 DJANGO: USING DATABASES

181

To retrieve a single document that meets the given criteria, use the

get() method. The following statement would return a Book document

with the specified name of the author:

doc = Book.objects.get(author="Rubio")

Using these filter operations, you can modify the books() and get-

book() views that we defined while working with PyMongo.

 DynamicDocument

The single most important difference between the MongoDB database

and the relational database, as was emphasized earlier, is the fact that the

MongoDB document is schema-less. In fact, it is one of the benefits of

MongoDB. However, the Document class is not different from the Model

in Django ORM. MongoEngine does provide another type of Document

class that allows storing documents with a variable number of fields in a

collection.

Let us create a DynamicDocument class as follows (just change the base

class in the previous definition):

class Book(DynamicDocument):

 title = StringField(max_length=50)

 author = StringField(max_length=50)

 price = IntField()

 publisher = StringField(max_length=50)

 meta = {'collection': 'Books'}

Ensure that your application is connected to the MongoDB server.

Insert a book document as before:

doc = Book(title="Decoupled Django", author=" Gagliardi ",

price=3874, publisher="Apress")

doc.save()

CHAPTER 5 DJANGO: USING DATABASES

182

The Books collection will have been created in the database.

Now, add another document with one extra attribute like year (for year

of publication):

doc = Book(title="Beginning Django", author="Rubio ",

price=3053, publisher="Apress", year=2017)

doc.save()

The two documents, with an unequal number of fields, will be found in

the Books collection.

[{

 "_id": {

 "$oid": "6677205a93b226b0ace10e21"

 },

 "title": "Decoupled Django",

 "author": " Gagliardi ",

 "price": 3874,

 "publisher": "Apress"

},

{

 "_id": {

 "$oid": "6677213b93b226b0ace10e22"

 },

 "title": "Beginning Django",

 "author": "Rubio ",

 "price": 3053,

 "publisher": "Apress",

 "year": 2017

}]

CHAPTER 5 DJANGO: USING DATABASES

183

MongoEngine provides the update_one() method to modify the value

of a certain field.

Book.objects(name="Rubio").update_one(set__price=4000)

Similarly, to remove a document from the collection, simply call the

delete() method.

doc=MyBook.objects.get(author="Rubio")

doc.delete()

Use these inputs to provide suitable views in your Django application.

There’s a lot more to MongoEngine than what has been described here.

A number of useful Field types, signals, and a powerful search mechanism

are some of its important features. The reader is encouraged to explore

these and other features by referring to the official documentation of

MongoEngine.

There is, however, one major drawback of using PyMongo or

MongoEngine with your Django application. Neither of them works with

Django’s built-in apps such as admin and auth apps in the django.contrib

module, which primarily rely on a relational database. When you run the da-

tabase migration, the models required for these apps are propagated to the

database for which your Django project is configured. Note that we haven’t

used the MongoDB database in the DATABASES settings of the project.

The Djongo package overcomes this problem. With Djongo, you can

use the Django ORM terminology and still use the MongoDB database as a

backend.

 Djongo

As mentioned earlier, though you can connect your Django app with a

MongoDB database with the PyMongo or MongoEngine libraries, Django’s

built-in apps (e.g., admin or auth app) are equipped to work with the

CHAPTER 5 DJANGO: USING DATABASES

184

Django-supported relational databases only. If you need these apps in your

project, you will have to adapt a hybrid model – relational database for

built-in apps and MongoDB for the specific functionality of your project.

Djongo provides you the best of both worlds. You can continue to

define the data models by following Django ORM and use the MongoDB

database, but also for the built-in apps – that too with very little tinkering

with your project’s settings.

Technically speaking, Djongo is a SQL to mongodb query transpiler. It

basically translates SQL queries to MQL (MongoDB Query Language). You

will continue to define your models as per the Django ORM and call the

same functionality for performing CRUD operations as with any relational

database. With minimal changes to your project settings, you can ask your

project to use MongoDB as the backend database.

Start by installing Djongo:

pip install djongo

Add djongo along with the name of your app in the INSTALLED_

APPS list.

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'djongo',

 'myapp',

]

CHAPTER 5 DJANGO: USING DATABASES

185

Replace the default DATABASES section in the project’s settings with

DATABASES = {

 'default': {

 'ENGINE': 'djongo',

 'NAME': 'djongodb',

 'CLIENT': {

 'host': 'mongodb://localhost:27017',

 }

 }

If you wish to host a database on a MongoDB Atlas cluster, use the fol-

lowing type of DATABASES configuration:

DATABASES = {

 'default': {

 'ENGINE': 'djongo',

 "CLIENT": {

 'name': 'djongodb',

 'host' :

'mongodb+srv://username:password@cluster0.oh20x8g.mongodb.net/?

retryWrites=true&w=majority ',

 'username': '<username>',

 'password' : '<password>'

 }

 }

 }

And that’s all. When you tell your Django project that you are using

the Djongo driver for database handling, the Django ORM function calls

are converted into MQL queries, directed toward the MongoDB database

specified in the project. Run migrations as usual. All the models defined

CHAPTER 5 DJANGO: USING DATABASES

186

by you as well as those needed for the INSTALLED_APPS such as admin,

auth, etc., will now be created in the MongoDB database referred to by the

NAME field above.

One of the significant drawbacks of Djongo is that it simply converts

SQL queries emitted by Django ORM API to MongoDB’s own query lan-

guage, without allowing you to use MongoDB’s distinguishing features

such as dynamic schema. The development of Djongo is also very much

behind that of Django. Hence, Djongo may not work with your existing ver-

sion of Django. You may have to downgrade it to version 4.x. Also, the latest

version of PyMongo is not compliant – it needs version 3.7.2.

Summary

This chapter helps you to explore how you can use databases other than

those officially supported by Django. SQLAlchemy is a powerful and popu-

lar Python ORM. On the other hand, more and more real-time modern

applications need schema-less databases, one of the most popular being

MongoDB. In this chapter, you learned how to connect a Django applica-

tion with MongoDB with PyMongo, MongoEngine, and Djongo libraries.

CHAPTER 5 DJANGO: USING DATABASES

187© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_6

CHAPTER 6

Advanced Django
In our journey thus far, we covered what can be called the core features

of Django – the model, view, and template. However, Django packs a lot

of other important features to make the application more robust, more

secure, and more comprehensive.

This chapter introduces some of the advanced features of Django. The

following topics are covered:

• Messages framework

• Authentication

• Security features

• Async support

• Reusable apps

• Django Debug Toolbar

 Messages Framework

One of the important design considerations of a web app is to be able to give

the user a seamless and engaging experience by providing useful feedback to

their interactions. You often find the notifications such as “invalid username

or password” or “the Country field cannot be empty” popping up on the

screen, particularly after processing the user input such as an HTML form.

https://doi.org/10.1007/979-8-8688-1472-3_6#DOI

188

Django’s Messages framework is a handy mechanism to push certain

temporary messages when it is processing a client request and consume

them when a subsequent request is being processed. Django supports

cookie-based and session-based messaging. When pushing a message

in the queue, it is tagged on the basis of its priority level (DEBUG, INFO,

SUCCESS, WARNING, and ERROR).

The standard Django project template (initialized with the

startproject command) uses the session-based messaging by default.

However, you can choose the other alternative of cookie-based messaging

by modifying certain project settings.

Before we discuss the difference between the two, we need to

understand what are cookies and what is a session.

 Cookies

Most web applications employ the cookies to store and retrieve a stateful

information regarding the client’s usage. The HTTP protocol, which is the

backbone of the World Wide Web, is a stateless protocol, which means the

web server doesn’t hold any information about the client when it processes

the request. Cookie acts as a workaround, in a bid to provide an enhanced

user experience. When the server sends its response to the client’s request,

it adds a small piece of text as a cookie along with the response body. This

text is stored on the client’s machine. When the same client sends another

request, this cookie is sent to the server as a part of the request body.

The set_cookie() method of the HttpResponse object lets you add

a cookie in the response body, before returning the response. Listing 6-1

shows how it is used.

Listing 6-1. setcookie() method

def setcookie(request):

 response = HttpResponse("Cookie Set!")

 response.set_cookie('username', 'admin')

 return response

CHAPTER 6 ADVANCED DJANGO

189

On the subsequent request (as in Listing 6-2), this cookie becomes a

part of the HttpRequest object, which can be retrieved as:

Listing 6-2. getcookie() method

def getcookie(request):

 user = request.COOKIES['username']

 return HttpResponse("Welcome back {}! ".format(user));

With certain additional arguments of the set_cookie() method, you

can control how the cookie behaves. For example, max_age states for how

long the cookie should stay in the client’s machine. Similarly, the secure

argument if set to True restricts the cookies to be passed only when a

request is made with the https scheme.

Moreover, calling the delete_cookie() method on the response object

will remove the cookie from the response.

 Sessions

The time duration between logging in and logging out of a web application

is called a session. The server stores one or more data values during the

session and releases them when the session is terminated.

Django uses the sessions as another way to store the stateful information

of the client. The session data is usually stored in the site database, although

you can configure Django to store the session data in cache, or files.

The default Django project structure created by the startproject

command already has the session handling capability enabled, by

including django.contrib.sessions in the INSTALLED_APPS. If not,

make sure the app is added.

INSTALLED_APPS = [

 # ...

 'django.contrib.sessions',

 # ...

]

CHAPTER 6 ADVANCED DJANGO

190

Also, the MIDDLEWARE list in the project’s settings.py file should

contain the SessionMiddleware.

MIDDLEWARE = [

 # ...

 'django.contrib.sessions.middleware.SessionMiddleware',

 # ...

]

The session data is available as a dict-like attribute of the HttpRequest

object. You can do all the normal dictionary operations such as adding or

removing keys from the dictionary. Most of the time though, you’ll need to

set a session variable or retrieve its value inside the views.

Here is how you can add a key in the session attribute:

request.session['username'] = 'admin'

On the other hand, retrieve the value of a session key by using:

user = request.session['username']

Occasionally, you may want to remove a certain key from the session

dictionary:

del request.session['username']

Note that this raises KeyError if the given key isn’t already in the session.

 Activating Messaging

As mentioned earlier, the messaging support is enabled in Django’s default

project template settings. To confirm, check if django.contrib.messages

is included in the INSTALLED_APPS list.

CHAPTER 6 ADVANCED DJANGO

191

INSTALLED_APPS = [

 #

 'django.contrib.messages',

 #

]

Another requirement already fulfilled by default is the inclusion of

SessionMiddleware and MessageMiddleware in the MIDDLEWARE list of

the project’s settings.

MIDDLEWARE = [

 #

 'django.contrib.sessions.middleware.SessionMiddleware',

 #

 'django.contrib.messages.middleware.MessageMiddleware',

 #

]

The order of these two middleware classes is important. The

SessionMiddleware must appear before MessageMiddleware.

Messages are pushed inside a view that Django executes in response

to a certain request, and they are retrieved by the template that is rendered

by the next client request. Hence, the context_processors attribute of the

TEMPLATES setting should be properly configured by making sure that the

context_processors.messages is included (shown in bold letters):

TEMPLATES = [

 {

 'BACKEND': 'django.template.backends.django.

DjangoTemplates',

 #

 'OPTIONS': {

 'context_processors': [

CHAPTER 6 ADVANCED DJANGO

192

 #,

 'django.contrib.messages.context_processors.

messages',

],

 },

 },

]

 Storage Backends

The handling of messages by your Django project depends on for which

storage backend it is configured. The django.contrib.messages package

defines three storage classes as follows.

The storage.session.SessionStorage class stores all messages

inside of the request’s session. To use this backend, your project needs to

have contrib.sessions app in the INSTALLED_APPS.

The storage.cookie.CookieStorage class stores messages in a cookie

to make them available across requests. However, the cookie data size

cannot exceed 2048 bytes.

Django uses storage.fallback.FallbackStorage by default. It

first uses CookieStorage but switches to the SessionStorage backend

if the messages could not be fit in a single cookie. It also depends on the

contrib.sessions app.

To override Django’s default storage backend, you need to define

MESSAGE_STORAGE in the project’s settings. To set the CookieStorage

class as the backend:

MESSAGE_STORAGE = "django.contrib.messages.storage.cookie.

CookieStorage"

CHAPTER 6 ADVANCED DJANGO

193

 Adding Messages

Once enabled, Django’s messaging API is very easy to use. The messages

class of django.contrib app (which has been included in the INSTALLED_

APPS) provides the add_message() method.

add_message(request, level, message, extra_tags='', fail_

silently=False)

The first argument is the HttpRequest object, which is provided by

the view from inside which a message will be added. Django classifies

the messages on the basis of priority levels (DEBUG, INFO, SUCCESS,

WARNING, and ERROR); one of these is the second argument. The

third one is the actual message string to be added. The other arguments

are optional. If you set fail_silently to True, Django suppresses the

MessageFailure error to be displayed.

For example, you may call the add_message() methods from a certain

view as in Listing 6-3.

Listing 6-3. add_message() method

from django.contrib import messages

messages.add_message(request, messages.SUCCESS, "Record updated

successfully")

The messages class also defines a set of convenience methods, each

matching with the predefined message levels as

messages.debug(request, "Counter: %s" % count)

messages.info(request, "Your free trial ends today")

messages.success(request, "Address updated.")

messages.warning(request, "Your password is weak")

messages.error(request, "File will be deleted.")

CHAPTER 6 ADVANCED DJANGO

194

 Fetching Messages

The messages pushed in the queue while processing one request are

available for consumption in the view function that Django invokes when

it receives the next request. If the view renders a template, the {% messages

%} tag presents the collection of available messages. Mostly, the messages

are flushed out with the help of the template syntax as shown in Listing 6-4.

Listing 6-4. Fetching messages

{% if messages %}

 {% for message in messages %}

 {{ message }}

 {% endfor %}

{% endif %}

This template code renders the messages in the form of an unordered

list. However, you may format it as required. You can even use conditional

template tags {% if %} and {% endif %} to filter a particular type of

messages to be displayed (for instance, you may want only the error

messages).

Let us test Django’s messaging functionality with the help of a simple

example. You need to add the above template code in the HTML page that

renders a basic login form (index.html as in Listing 6-5), posting the form

data to itself.

Listing 6-5. index.html

<form class="modal-content animate" action="" method="POST">

{% csrf_token %}

<div class="container">

<label for="username">Username</label>

CHAPTER 6 ADVANCED DJANGO

195

<input type="text" placeholder="Enter Username"

name="username">

<label for="password">Password</label>

<input type="password" placeholder="Enter Password"

name="password">

<input type="submit" value="Login">

</div>

</form>

The index() view renders this form when the user visits its mapped

URL. On submitting, the function pushes an error message if either the

username or password (or both) is not entered, as also when the username

is one of the reserved usernames and stays on the login page. Otherwise,

Django pushes a success message to be consumed by a suitable template

which the success() view renders. A warning message is also added to

the message queue if the password is less than nine characters. Listing 6-6

shows the index view function.

Listing 6-6. index view

from django.http import HttpResponse

from django.contrib import messages

def index(request):

 if request.method == 'POST':

 name = request.POST.get("username")

 password = request.POST.get("password")

 if name =="" or password =="":

 messages.error(request, "required")

 if len(request.POST.get('password'))<9:

 messages.warning(request, "Weak Password")

 if name in ['admin', 'manager', 'superuser']:

 messages.error(request, "Username Not Available")

CHAPTER 6 ADVANCED DJANGO

196

 else:

 messages.success(request, "Login Successful.

Welcome "+name)

 return HttpResponse("success")

 return render(request, "index.html", {})

Ensure that the views are properly wired to the corresponding

urlpatterns. The login form (refer Figure 6-1) opens in response to the

URL: http://localhost:8000/myapp/. Try entering one of the reserved

usernames with a shorter password.

Figure 6-1. Login screen

Django responds with the error and warning messages, on top of the

login form (Figure 6-2).

CHAPTER 6 ADVANCED DJANGO

197

Figure 6-2. Flashed message

In other situations, you should see the success page rendered with a

welcome message on top.

 Authentication

As you learned earlier, Django’s admin interface is one of its prominent

tools. The Admin app is added to your Django project by default. With its

convenient and user-friendly interface, you can perform managerial tasks

such as creating users and assigning them roles.

The admin interface is built on top of the django.contrib.admin

module, which you can import into your own Django app and incorporate

the functionality in it. In most of the web applications, you find some of

its resources are available for all. However, some of the features can be

accessed by a registered user only. Hence, the application needs to let the

visitor register and log in. You can then restrict the access to any view only

to an authenticated user.

CHAPTER 6 ADVANCED DJANGO

198

You already know how to create a superuser (using the command

python manage.py createsuperuser), log into the admin site with it, and

then create other users. The details of the users (name, password, groups

and the roles assigned to them, etc.) are stored in the User model defined

in the django.contrib.auth module. An elaborate API of this module lets

you very conveniently handle the authentication of a user.

 Login and Logout

There are three main steps involved in the authentication mechanism.

First, call the authenticate() function by passing the username and

password (possibly entered via a login form) that returns the authenticated

User object.

from django.contrib.auth import authenticate

user = authenticate(username, password)

To log the authenticated user in, you need to add it to the current

session by calling the login() function.

login(request, user)

To log the current user out, simply call the logout(request) function,

which will pop out all the session data related to the logged-in user.

The registration of a new user is facilitated by a ModelForm named

UserCreationForm in the auth app. When rendered, it shows a Username

field (corresponding to the User model) and two password fields –

password1 and password2. As the form is submitted, the validate_

password() function checks if both of them match and the password meets

the stipulated criteria (such as it must not be less than eight characters,

that it can’t be entirely numeric, etc.). The mapped view then extracts the

form data and saves it to the User model.

CHAPTER 6 ADVANCED DJANGO

199

To demonstrate Django’s authentication functionality, start by building

a simple home page (as in Figure 6-3) that has links to let you log in and

register a new user.

Figure 6-3. Home page

The login hyperlink invokes the login_user() view (the code in

Listing 6-7) and renders a login form. When submitted, Django parses the

name and password fields and calls the authenticate() function.

If the user is authenticated, the success message appears on the home

page; otherwise, an error message is displayed.

Listing 6-7. login view

from django.shortcuts import render, redirect

from django.contrib.auth import authenticate, login, logout

from django.contrib import messages

def login_user(request):

 if request.method == "POST":

 username = request.POST['username']

 password = request.POST['password']

 user = authenticate(request, username=username,

password=password)

CHAPTER 6 ADVANCED DJANGO

200

 if user is not None:

 login(request, user)

 messages.success(request, "Login successful. Hello

{}".format(user))

 return redirect('index')

 else:

 messages.error(request, ("There Was An Error

Logging In, Try Again..."))

 return redirect('login')

 else:

 return render(request, 'login.html', {})

It is assumed that a superuser for the admin site has already been

created with admin as the username. Follow the login link from the home

page, and use the admin credentials to be filled in the form. The home

page after successful login appears as shown in Figure 6-4.

Figure 6-4. Login message

The Listing 6-8 shows the code for log_out() view, which when called

when the logout link is accessed, simply removes the current user from the

session and pushes the message, letting the user know that they have been

logged out.

CHAPTER 6 ADVANCED DJANGO

201

Listing 6-8. logout view

def logout_user(request):

 logout(request)

 messages.info(request, "You Were Logged Out!")

 return redirect('index')

The home page now appears as shown in Figure 6-5.

Figure 6-5. Logout message

You must have noted that link to the login changes to logout when

a user logs in and back to login link when it logs out. This is effected by

adding the template code shown in Listing 6-9 in the index.html page.

Listing 6-9. index.html

 {% if messages %}

 {% for message in messages %}

 <p>{{ message }}</p>

 {% if message.level == 25 %}

 Click here to Log out

 {% else %}

 Click here to Log In

CHAPTER 6 ADVANCED DJANGO

202

 {% endif %}

 {% endfor %}

 {% else %}

 Click here to Log In

{% endif %}

Click here to Register

 <h2>Home page</h2>

 New User

As mentioned earlier, we’ll render the UserCreationForm to accept the

username and password from the visitor to create a new User object,

by saving the validated form. Add the register_user() view (as in

Listing 6-10) in views.py code.

Listing 6-10. register view

def register_user(request):

 if request.method == "POST":

 form = UserCreationForm(request.POST)

 if form.is_valid():

 form.save()

 username = form.cleaned_data['username']

 password = form.cleaned_data['password1']

 user = authenticate(username=username,

password=password)

 login(request, user)

 messages.success(request, ("Registration

Successful!"))

 return redirect('index')

CHAPTER 6 ADVANCED DJANGO

203

Note that the newly added user is authenticated and logged in as well,

before returning to the home page. The /register route displays the form

(Figure 6-6) for the visitor to fill.

Figure 6-6. UserCreationForm

Log into the admin site and confirm that the newly registered user

appears in the list of objects (shown in Figure 6-7) in the User model.

CHAPTER 6 ADVANCED DJANGO

204

Figure 6-7. Admin home page

Note the cross mark against the new user. You can accord the manager

a staff status by setting the is_staff property to True. Furthermore, you

can also inherit the UserCreationForm and include the other fields first_

name, last_name, and email, available to the User model in the auth app.

 @login_required()

Now that you have defined a view function that handles the user login

and a route mapped to it, let us see how you can restrict access to any of

the views only if an authenticated user has been logged in. Putting the

login_required() decorator at the top of a view proves quite effective for

this purpose. How does it work?

When a route mapped to such a protected view is visited, Django

checks whether the session consists of the logged-in user’s information.

If yes, Django executes the view normally. If not, it redirects to the view

CHAPTER 6 ADVANCED DJANGO

205

designated as a login view while passing the current absolute path in the

query string. You need to either have a LOGIN_URL variable set to the URL

route corresponding to the login view or specify the login_url parameter

to the login_required decorator itself.

To check how it works, add a new view (Listing 6-11) in the app’s views.

py code.

Listing 6-11. login_required decorator

from django.contrib.auth.decorators import login_required

@login_required(login_url="../login/")

def myview(request):

 return HttpResponse("This message will be displayed only if

a user is logged in")

Remember, you should also add a URL pattern to wire up this view to a

URL route, for example:

urlpatterns = [

 . . .

 path('myview/', views.myview, name="myview"),

]

If you visit the myview/ URL route in the browser, two things happen.

One, the browser is redirected to the login_url (which in this case is

login/) and it appends a query string with next as the key and the current

path as the value. The next field tells Django which view to execute after

the user is authenticated and logged in.

So the URL http://localhost:8000/myapp/myview/ (with no

user currently logged in) is entered, the browser goes to http://

localhost:8000/?next=/myapp/myview/, and the login page opens

up, as shown in Figure 6-8.

CHAPTER 6 ADVANCED DJANGO

206

Figure 6-8. Login page on redirect

As you would expect, after the login credentials are verified, the

myview() function gets called.

Another approach to restrict the view access only if a user has an active

session is using the request.user.is_authenticated variable (refer

Listing 6-12) – it will be True if a session is active.

Listing 6-12. is_authenticated

def myview(request):

 if request.user.is_authenticated:

 return HttpResponse("This message will be displayed

only if a user is logged in")

 else:

 return redirect("login")

CHAPTER 6 ADVANCED DJANGO

207

 Security Features

While Django’s authentication and authorization framework lets you

control the access to the critical views in your application, it doesn’t

necessarily ensure that it is secured against various types of hacking

attacks. Django API does have adequate provisions to counter some of

the deadliest types of attacks that the hackers often indulge in. In this

section, you will explore how Django tries to address certain security

vulnerabilities.

 CSRF

Earlier in this book (Chapter 4), you came across a template tag {% csrf_

token %} being used while building the form templates. This template

tag is used inside an HTML form, especially having POST as its request

method. You must have wondered what the role of this tag is. In this

section, you’ll get to know its purpose.

The term “CSRF” is an acronym for Cross-Site Request Forgery. One of

the common types of attacks on the security of a web application, CSRF is

known by various names – XSRF, one-click attack, etc.

Simply put, CSRF is an attack in which the perpetrator forces an

already-authenticated user of the application to unknowingly submit a

request that is intended to execute a potentially harmful instruction that

will alter the state of a resource on the server. In other words, a malicious

user executes certain harmful actions using the credentials of another user

without the latter’s knowledge.

The result of a CSRF attack may range from deleting one or more

resources (such as objects in a model), resulting in change of user’s

password and thereby them losing the access, to even executing a financial

transaction that siphons out the money from the user’s bank account.

CHAPTER 6 ADVANCED DJANGO

208

Fortunately, Django has a very easy-to-use provision to tackle

the CSRF attacks very efficiently. First, you need to see that the CSRF

middleware is enabled in the MIDDLEWARE setting (usually it is enabled

by default, whenever a Django project is initialized with the startproject

command).

MIDDLEWARE = [

 . . .,

 'django.middleware.csrf.CsrfViewMiddleware',

 . . .,

]

You also must see to it that the CSRF middleware appears before any

view middleware. Secondly, whenever you are designing a form template

with POST request, the csrf_token template tag is put inside the <form>

and </form> tags.

<form method="post">

{% csrf_token %}

//other form elements

</form>

How does this anti-CSRF mechanism work?

The CsrfViewMiddleware causes the server to send a CSRF cookie with

a random secret value this cookie within the response.

As a result of the csrf_token template tag, the HTML form is rendered

with a hidden input field with its name as “csrfmiddlewaretoken” and

value as the CSRF cookie.

<input type="hidden" name="csrfmiddlewaretoken" value="hYxmyDcC

3PqV30YJJawPmt3OAqlScfeZU9uTt4aANNtJe4Ufx3pssjUF1cxeQUIE">

When the form is submitted, Django checks if it contains the hidden

field and its value matches with the cookie. If not, the user will get a 403

error, as the Figure 6-9 shows.

CHAPTER 6 ADVANCED DJANGO

209

Figure 6-9. CSRF failure

 XSS

Web applications often find themselves vulnerable against Cross-Site

Scripting (XSS) attacks. Hence, you as a Django developer should be aware

of how XSS attacks work and how to mitigate the threats.

The XSS attack involves luring the user to click a link that executes a

harmful JavaScript code in the user’s browser. The JavaScript code thus

injected may be intended to fetch the personal data of the user, hijack the

current session, or even a complete takeover of the system.

The use of Django templates does provide you a good enough protection

against XSS attacks by escaping certain characters that are potentially

dangerous to HTML. Imagine a form collecting certain input from (e.g.,

name) the user and passing it as the context to a template. The template

code uses it to render a Hello message as

Hello {{ name }}

As a result, if the form input is Admin, the message would be Hello

Admin. However, if the form input is something like

<script>alert('Admin')</script>

CHAPTER 6 ADVANCED DJANGO

210

this will cause the HTML script to include the JavaScript, resulting in the

alert message popping up on the browser. (In this case, the alert message

may be harmless, but it could have been any JavaScript function capable of

performing more damaging actions!) Thankfully Django doesn’t let this

happen, because of the automatic HTML escaping feature of Django

Template Language. Since the autoescape tag is ON by default

• < is converted to <

• < is converted to >

• ‘ (single quote) is converted to '

• “ (double quote) is converted to "

As a result, the above JavaScript code will become

<script>alert('Admin');</script>

The XSS attack is thus averted.

There is, of course, a provision to turn the automatic escaping feature

off. You can use the safe filter to disable escaping for a particular template

variable, such as

Hello {{ name | safe }}

You can also turn autoescape off for a block of template code:

{% autoescape off %}

Hello {{ name }}

{% endautoescape %}

However, this paves the way for some harmful JavaScript to be inducted

in your application. Hence, it is advised that you avoid turning autoescape

mode off unless it is absolutely necessary. You should remember that storing

HTML in the database should also be avoided as far as possible, especially if

that HTML is retrieved through a query and rendered to the browser.

CHAPTER 6 ADVANCED DJANGO

211

 SQL Injection

If you use Django ORM for all your database handling requirements, you

are more or less sufficiently protected against the SQL injection attacks. It

is only if you need to execute SQL queries directly from inside your views

that your application becomes vulnerable.

SQL injection is also one of the commonly employed techniques by the

hackers to intrude into the system. The attacker uses the input fields in a form

to inject malicious SQL commands, which affects the way your application

behaves. The results may be disastrous, leading to information leaks and

unauthorized access, or even it may result in erasing all the data.

Assume that a user is asked to enter their credentials, which in turn are

used to form a SQL query to authenticate the user. The data in the form

elements is stored in the two variables: username and password.

qry = "SELECT * FROM users WHERE username='"+username + "' AND

password='"+password+"';"

Assuming that the form inputs are ‘test’ and ‘abcd1234’ for username

and password, respectively, the query string would become

SELECT * FROM users WHERE username='test' AND

password='abcd1234';

In this case, the query will return a row matching with the inputs.

However, think of a case where the user inputs abcd1234 or 1=1 in the

password field of the login form. The SQL query then becomes

SELECT * FROM users WHERE username='test' AND

password='abcd1234 or 1=1';

This string is a valid SQL query. However, the condition or 1=1

causes it to evaluate as TRUE always irrespective of the inputs. As a result,

the intruder gains access to the system, which can further cause

potential damage.

CHAPTER 6 ADVANCED DJANGO

212

So what are the measures to be taken to avert such attacks? Let us

 explore the available options.

First and foremost, use Django’s built-in authentication mechanism to

validate the user. Use the authenticate() function in the django.contrib

package as explained earlier.

from django.contrib.auth import authenticate

username = request.POST['username']

password= request.POST['password']

user = authenticate(username=username , password=password)

Second, if you really need to use dynamically constructed SQL queries,

always use parameterized queries. Instead of directly embedding user

input into SQL queries (as done in the earlier example), create a query

string with the ? symbol as the placeholders, such as

qry = "SELECT * FROM customers WHERE username = ? AND

password = ?"

The execute() method of a DBI-compliant module for any database

will dynamically construct a query by inserting the values of the variables

from the tuple parameter.

cursor = conn.cursor()

cursor.execute(qry, (username, password))

The ? placeholders in the string are replaced with the respective

parameter values, and the safely constructed query is executed. Thus, SQL

injection attempt is thwarted.

Last but not the least, you should use Django’s ORM as much as pos-

sible. In fact, Django ORM internally uses SQL parameterization to provide

built-in protection. Hence, Django’s querysets are protected from SQL

injection.

CHAPTER 6 ADVANCED DJANGO

213

Let us also discuss some of the additional security considerations. One

of the aspects is the SECRET_KEY in your project. While in the DEBUG

stage, the secret key is stored in the SECRET_KEY variable in the settings.

py file.

SECURITY WARNING: keep the secret key used in production secret!

SECRET_KEY = 'django-insecure-n+7m3d+e_9wpe=n-+pz%3w-

g=3(0tws#gdi%6_9r^!v!yzbubp'

However, as the application is ready for launch on a public server, it

should be stored using environment variables. Remove the KEY information

from this module. Generate a strong, random SECRET_KEY using a secure

method. Copy your secret key from your settings.py file and paste it into

the .env or .venv file, and then make it available to the project’s settings by

including

SECRET_KEY = str(os.getenv('SECRET_KEY'))

Deploying your Django application behind HTTPS provides better

security. To enable HTTPS support, set SECURE_PROXY_SSL_HEADER

parameter to True, or else, your application may become vulnerable

against CSRF attacks. You must also set SECURE_SSL_REDIRECT to True.

Setting SESSION_COOKIE_SECURE and CSRF_COOKIE_SECURE settings

to True is also highly recommended.

 async Views

As you learned earlier (Chapter 1, section “Asynchronous Processing”),

versions of Django from 3.1 onward support writing asynchronous views.

Your Django application needs to be run on an ASGI server like Uvicorn or

Daphne. The async views still work with the WSGI server, the one included

in Django API itself. However, their efficiency is limited considerably.

CHAPTER 6 ADVANCED DJANGO

214

Defining async views is not much different than defining a coroutine.

You need to add async before the def keyword. If your application has

class-based views, the HTTP methods, such as get() and post(), should be

defined as async def.

Let us start by defining a simple async view that returns Hello World

message.

from django.http import HttpResponse

async def index(request):

 return HttpResponse("<h2>Hello, World</h2>")

You can, of course, execute this view by visiting its mapped URL while

the Django server is invoked with the runserver command. However, we

would like to use an ASGI-enabled server. In Chapter 1, you used Daphne.

Here we shall run this application with Uvicorn.

Install Uvicorn in the current Django environment:

pip3 install uvicorn

Use the command-line interface of Uvicorn to launch the server. Note

that the command-line syntax is very similar to that of Daphne:

uvicorn asyncproject.asgi:application --reload

The terminal log shows that the server is up and running at port 8000

of the localhost.

INFO: Will watch for changes in these directories:

['D:\\workspace\\asyncproject']

INFO: Uvicorn running on http://127.0.0.1:8000

(Press CTRL+C to quit)

INFO: Started reloader process [19276] using StatReload

INFO: Started server process [19296]

CHAPTER 6 ADVANCED DJANGO

215

INFO: Waiting for application startup.

INFO: ASGI 'lifespan' protocol appears unsupported.

INFO: Application startup complete.

You can visit the URL route mapped to the index view to get the Hello

World message in the browser.

Let us add some really asynchronous activity in the views. First, install

the HTTPX package in the current environment.

pip3 install httpx

The HTTPX library is an asynchronous HTTP client. It offers a fully

asynchronous API for making HTTP requests and allows HTTP operations

to be performed asynchronously. However, you can also make synchro-

nous calls also with it.

Use the AsyncClient class in HTTPX for asynchronous requests.

import httpx

 async with httpx.AsyncClient() as client:

 response = await client.get("https://httpbin.org/")

httpbin.org is an open source HTTP request and response service that

is helpful to test and debug HTTP requests and responses.

This async call is made from inside an async helper function that calls

a sleep() function asynchronously and also makes a GET call on httpbin.

org. When the function is called by some async view, Uvicorn goes ahead

with the GET call to httpbin.org while the awaitable sleep() function is

run. Listing 6-13 shows the async_call() function.

Listing 6-13. async view

async def async_call():

 await asyncio.sleep(10)

 async with httpx.AsyncClient() as client:

CHAPTER 6 ADVANCED DJANGO

216

 response = await client.get("https://httpbin.org/")

 print("Response From httpbin: ", response)

 print ("async call completed..")

Let us call this function from an async view:

async def async_view(request):

 loop = asyncio.get_event_loop()

 loop.create_task(async_call())

 return HttpResponse("Non-blocking HTTP Response")

When you visit the URL that is mapped to this view (“async/” in this

case), Django immediately renders its HTTP response to the browser

(Non-blocking HTTP Response) while the async_call() function executes

asynchronously.

On the terminal, you should get the output as

INFO: 127.0.0.1:52590 - "GET /myapp/async/ HTTP/1.1" 200 OK

Response From httpbin: <Response [200 OK]>

async call completed..

It can be seen that the view’s response is rendered first, followed, after

the sleep time, by the response from httpbin.org service.

To compare this with the synchronous behavior, define another helper

function (refer Listing 6-14):

Listing 6-14. sync view with helper function

def sync_call():

 time.sleep(10)

 response = httpx.get("https://httpbin.org/")

 print("Response From httpbin: ",response)

 print ("sync call completed..")

CHAPTER 6 ADVANCED DJANGO

217

Invoke this from inside a normal view:

def sync_view(request):

 sync_call()

 return HttpResponse("Blocking HTTP Response")

The “sync/” URL route that takes the server to this view first performs

the GET call to httpbin.org. After its response is obtained, the view

response is then rendered.

Response From httpbin: <Response [200 OK]>

sync call completed..

INFO: 127.0.0.1:52591 - "GET /myapp/sync/ HTTP/1.1" 200 OK

 Adapter Functions

Django API provides a couple of adapter functions in the asgiref.sync

module. These functions act as a bridge between the synchronous and

asynchronous context.

async_to_sync(): Give an asynchronous callable (coroutine) as an

argument to this function. It returns a synchronous wrapper around it. You

can then call synchronous code within an asynchronous context.

To use any of Django’s synchronous functions, such as render(), from

an async view, you can wrap them using async_to_sync.

sync_to_async(): A synchronous function goes as an argument to this

function and returns an asynchronous wrapper around it so that you can

call asynchronous code within a synchronous context. Use it especially

when you have an existing synchronous function and you want it to be

used within an async context or when you need to call async functions

from synchronous Django code.

CHAPTER 6 ADVANCED DJANGO

218

 async QuerySets

Django has extended the async capability to run ORM queries also. All

QuerySet methods that you used earlier have an a-prefixed asynchronous

counterpart. For example, the get() method now becomes aget() and

delete() needs to be replaced by adelete() in async context. For example:

book = await Book.objects.filter(author='Alchin').afirst()

returns the first occurrence of the object satisfying the given condition.

Instead of using for statement for iterating over a queryset, use

async for

async for entry in Book.objects.filter(name__startswith="A"):

 ...

Some queryset methods like get() and first() are blocking in nature.

Hence, they have sync counterparts with names starting with “a” – such as

aget() and afirst(). Others, like filter() and exclude(), are safe to be

run from asynchronous code.

 Reusable Apps

So far, you have learned to create a Django app inside a project, with the

help of the startapp command. You can also have more than one app

in a project. But how about making your app reusable to other users?

In Django, a reusable app is a self-contained package that can be easily

plugged into different projects.

When you build a Django project, a number of Django apps are

installed by default. The admin app is an example, which is distributed

with the Django software itself. In addition, you can add other third-party

apps in your project. For that, you need to install it first and then include it

in the list of INSTALLED_APPS.

CHAPTER 6 ADVANCED DJANGO

219

You are familiar with installing a Python package from the PyPI repository

with the PIP utility and then using its functionality. A Django application is

also a package folder having models, tests, urls, and views submodules in

addition to static and template folders. How would you distribute your app

for others to download, install, and use?

Let us find out what are the steps involved. Assume that you have an

app called myapp in your Django project, which you have already put in the

INSTALLED_APPS list.

INSTALLED_APPS = [

 . . .

 'myapp',

]

Before proceeding, ensure that your Python environment has

setuptools installed. It is a Python module with which you can compile,

distribute, and install Python packages. If not already available, install the

same with the PIP command:

pip3 install setuptools

Coming back to your app, note that it is recommended to use a

django- prefix for package name, to make your package as specific to

Django, and a corresponding django_ prefix for your module name. So

move the myapp app folder from your project to the django-myapp folder

and rename the myapp folder itself to django_myapp.

Open the django_myapp/apps.py file and set the name attribute of

MyappConfig class to django_myapp as shown here:

from django.apps import AppConfig

class MyappConfig(AppConfig):

 default_auto_field = 'django.db.models.BigAutoField'

 name = 'django_myapp'

 label = 'myapp'

CHAPTER 6 ADVANCED DJANGO

220

Now you need to create some new files in the package folder, i.e.,

django-myapp folder.

Create a README.rst file, which essentially contains the technical

documentation of how to install and use your app.

Also put in a LICENSE file, a text illustrating the terms of use. Most

Django apps are distributed under BSD license; however, you are free to

choose any.

The setup.cfg is a configuration file used by the setuptools packaging

library. It specifies the metadata of the app including the version, the

license type, author’s details, etc. It also defines the desired versions of

Python and Django, also certain dependencies if any. Here is an example

of setup.cfg:

[metadata]

name = django-myapp

version = 0.1

description = An example Django app

long_description = file: README.rst

url = https://www.example.com/

author = Your Name

author_email = yourname@example.com

license = BSD-3-Clause

classifiers =

 Environment :: Web Environment

 Framework :: Django

 Framework :: Django :: 5.0

 Intended Audience :: Developers

 License :: OSI Approved :: BSD License

 Operating System :: OS Independent

 Programming Language :: Python :: 3 :: Only

 Topic :: Internet :: WWW/HTTP

 Topic :: Internet :: WWW/HTTP :: Dynamic Content

CHAPTER 6 ADVANCED DJANGO

221

[options]

include_package_data = true

packages = find:

python_requires = >=3.10

install_requires =

 Django >= 4.2

Finally, create a setup.py file. It simply invokes the setup() function

from the setuptools module. The setup() function makes use of the

configuration details in the setup.cfg file.

from setuptools import setup

setup()

While building the package, the setup() function copies only the Python

modules and subpackages. If you need to include any other assets, such as

the templates and static files, you should also provide a MANIFEST.in file.

include LICENSE

include README.rst

recursive-include django_myapp/static *

With all the prerequisites in place, you are now in a position to build

the package, with the following command:

python setup.py sdist

Make sure that this command is run while in the django-myapp folder.

This will create a dist folder that holds the django_myapp-0.1.tar.gz file.

The activity log in the terminal goes something like this:

running sdist

running egg_info

creating django_myapp.egg-info

CHAPTER 6 ADVANCED DJANGO

222

. . .

. . .

adding license file 'LICENSE'

writing manifest file 'django_myapp.egg-info\SOURCES.txt'

running check

creating django_myapp-0.1

creating django_myapp-0.1\django_myapp

creating django_myapp-0.1\django_myapp.egg-info

creating django_myapp-0.1\django_myapp\migrations

creating django_myapp-0.1\django_myapp\static

copying files . ..

Writing django_myapp-0.1\setup.cfg

creating dist

Creating tar archive

To be able to use this app, install it with the PIP command:

pip3 install dist/django-myapp-0.1.tar.gz

Go back to your project now. Since you have removed the myapp app

folder, it won’t function properly now. Let us add the newly installed app in

the INSTALLED_APPS list:

INSTALLED_APPS = [

 . . .

 'django_myapp.apps.MyappConfig',

]

You must also update the URLCONF of your project by including the

urls of the django_myapp app:

from django.contrib import admin

from django.urls import path, include

CHAPTER 6 ADVANCED DJANGO

223

urlpatterns = [

 . . .

 path('myapp/', include('django_myapp.urls')),

]

Incorporate carefully all the above steps, and launch the Django

development server and check if it works fine, which it should if everything

has been done accordingly.

Finally, you may want to make your package available for public

consumption by uploading it to https://pypi.org/ – the Python package

index repository. PyPI recommends using Twine, a utility for publishing

Python packages. So you need to install it first.

pip3 install twine

To publish your package, register with https://pypi.org/account/

register/ and log in with your credentials. From your package directory,

run the following command:

twine upload dist/*

Enter your username and password when prompted. After the upload

is finished, your package is now available on PyPI.

 Django Debug Toolbar

One of the defining features of Django is its rich ecosystem of reusable

apps for different use cases. Most of them are available in an open source

domain; a comprehensive repository of Django apps is maintained at

https://djangopackages.org/. Incorporating such apps in your core

project helps you extend it with additional functionality without reinventing

the wheel.

CHAPTER 6 ADVANCED DJANGO

https://pypi.org/
https://pypi.org/account/register/
https://pypi.org/account/register/
https://djangopackages.org/

224

You will learn about working with a couple of such third-party apps

during the course of this book. This section introduces one of the must-have

apps – Django Debug Toolbar.

As the name suggests, the objective of the Django Debug Toolbar is

to provide useful debugging information about Django web applications.

With the help of this app, you can easily identify and debug any problems

in your application. The debugging information is available in a collapsible

and customizable set of panels. For instance, the SQL panel shows details

of SQL queries, and the Setting panel lists of the parameters and their

value of various settings variables without looking at the source code of the

settings.py module.

Like any reusable app, you need to install it in the current Django

environment with the PIP utility.

pip3 install django-debug-toolbar

You can now add this app in the list of INSTALLED_APPS.

INSTALLED_APPS = [

 . . .

 'debug_toolbar',

 'myapp',

]

To update the project’s URLCONF accordingly, add debug

toolbar’s URL:

from django.contrib import admin

from django.urls import path, include

import debug_toolbar.toolbar

urlpatterns = [

 . . .

 path("__debug__/", include(debug_toolbar.urls)),

]

CHAPTER 6 ADVANCED DJANGO

225

You also need to update the MIDDLEWARE list:

MIDDLEWARE = [

 "debug_toolbar.middleware.DebugToolbarMiddleware",

 . . .,

]

Note that this app is intended for use in DEBUG mode, i.e., when

Debug parameter is set to True. In the development stage, the INTERNAL_

IPS setting must include the IP address of the localhost – 127.0.0.1.

INTERNAL_IPS = [

 "127.0.0.1",

]

If properly installed, you should get to see a DjDT handle appearing on

the right-hand side of the browser (as in Figure 6-10) when you visit any of

the application routes, including the Admin page.

Figure 6-10. Admin home page with a DjDT handle

CHAPTER 6 ADVANCED DJANGO

226

The toolbar will be expanded when you click on the handle. A list of

debug panels will appear (Figure 6-11).

Figure 6-11. Debug toolbar panels

The app is configured for showing some panels by default. Figure 6-12

shows the SQL panel that lists SQL queries along with the time taken to

execute and the link to explain the queries.

CHAPTER 6 ADVANCED DJANGO

227

Figure 6-12. SQL panel

Click the Expl button and the browser “explains” the query, as the

Figure 6-13 shows.

Figure 6-13. SQL explained

CHAPTER 6 ADVANCED DJANGO

228

Other panels that display useful information are Settings (project

settings parameters and their values) and Request panels (Figure 6-14),

displaying the view executed, cookies, session data, etc.

Figure 6-14. Request panel

You can work with this app extensively and explore how best you can

make use of its functionality.

Summary

Django is a full-stack web framework, packed with a lot of powerful features.

In this chapter, you learned how you can enhance your application by

including messaging and authentication. This chapter also discussed various

security provisions and how you can enable async support for Django

application. In the end, you explored the Django Debug Toolbar and how it

proves to be effective in debugging an application.

In the next chapter, we shall discuss one of the most popular Django

apps: the Django Rest Framework.

CHAPTER 6 ADVANCED DJANGO

229© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_7

CHAPTER 7

REST API with Django
Django is a popular choice for building robust data-driven web

applications. In recent years, there is a growing trend of adding a web API

component to the application so that various frontend apps can interact

with the resources of the main applications. Django’s large ecosystem of

reusable apps offers tools, such as Django REST Framework and others,

that help you add the API functionality to a Django project.

In this chapter, you will acquaint yourself with the basics of REST. You

will also explore the important features such as serialization and

authentication offered by the Django REST Framework app. Toward the

end, this chapter introduces Django Ninja, a modern API building tool that

provides async support.

Here are the main topics to be covered in this chapter:

• What is API?

• REST architecture

• Serialization

• Django REST Framework

• Django Ninja

https://doi.org/10.1007/979-8-8688-1472-3_7#DOI

230

 What Is API?

The term “API” (which stands for Application Programming Interface)

is a popular buzzword these days among the developer community. In

general, an interface is an entity where two different environments meet

and interact. A seaport, for example, can be considered as an interface

between a sea and the land. A receptionist that sits at the front desk of

an office is also an interface between the visitors and the office internals

such as employees, procedures, and information. A computer’s main unit

interacts with the peripheral devices such as keyboard, mouse, and printer

through different interfaces (serial, parallel, and USB interfaces).

The API is a software interface between two software applications. It

acts as a contract between the two, defining how one of them requests the

other for a certain information and how the other responds. In the IT-

enabled world around us, we routinely work with so many APIs. Different

payment apps act as an interface between the customers, banks, and

merchants. When we come across numerous websites letting you to log in

with the IDs of social media apps like Facebook, LinkedIn, etc., the APIs

exposed by them are at work (Figure 7-1).

Chapter 7 reSt apI wIth Django

231

Figure 7-1. Social login API

Different weather data aggregators collect data from various sources

such as satellites. Their APIs are consumed by weather apps and websites

that provide weather forecast over a certain period.

Chapter 7 reSt apI wIth Django

232

Over the years, various different protocols and specifications for

building API solutions have been employed by the developers. Let us have

a brief introduction of some of them:

SOAP: Simple Object Access Protocol is one of the

earliest protocols used for the development of APIs.

This protocol primarily uses XML to transmit data

over an HTTP or HTTPS connection. The requests

are composed with a fairly rigid set of rules of

WSDL – Web Services Description Language.

RPC: The Remote Procedure Call allows a program

to execute a procedure (function) residing on

another computer or server. RPC is used in a client-

server environment, where the client initiates a

request to the server, and the server executes the

request and sends the results back to the client.

The XDR (eXternal Data Representation) protocol,

on top of which the RPC is built, standardizes the

representation of data in remote communications.

gRPC: The Google Remote Procedure Call is a

specific implementation of RPC with a focus on

efficiency. Developed by Google, this open source

framework is designed for establishing efficient

distributed systems and makes it easier to build

microservices that enable communication between

applications.

REST: A de facto standard in today’s world of API-

first approach of web application development,

RElational State Transfer is more of a collection of

principles or guidelines rather than a protocol. REST

is an architectural style and a set of constraints that

Chapter 7 reSt apI wIth Django

233

define how the web services should interact with

each other. In this chapter, we shall be discussing

how to build a REST API with Django, specifically

with the Django REST Framework app. In the next

section, we shall discuss the REST architecture in

more details.

 REST Architecture

As mentioned above, REST is the preferred approach to create stateless,

reliable web-based applications throughout the software industry. The

term “REST” was first coined by Roy Fielding in the year 2000, when he

was working on the creation of formal descriptions of HTTP standards. He

recommended an architectural style that entails certain constraints, which,

when implemented, provides advantages such as simplicity of a uniform

interface, scalability and portability of components, and more.

Given below is a brief overview of the six guiding constraints defined in

Fielding’s PhD thesis, “Architectural Styles and the Design of Network-

based Software Architectures.”

 Uniform Interface

Unlike SOAP and RPC, which are action-based protocols, REST is a

resource-based architecture. A file, an image, or a row in a table of a

database, everything is considered as a resource on the server. A resource

on the server is identified by a Uniform Resource Identifier (URI).

When a client sends the request for a resource, it should contain all the

information required for retrieving and processing it.

This constraint requires that the client request should contain

everything that is required for it to be processed. The request must include

the URI of the resource and the action to be taken on it, along with some

Chapter 7 reSt apI wIth Django

234

additional data if required, especially if the request involves creating a new

resource. HTTP verbs (also known as HTTP methods) represent the action

to be performed. The HTTP methods POST, GET, PUT, and DELETE are

defined in the HTTP protocol specification and correspond to CREATE,

READ, UPDATE, and DELETE operations on the server’s resource.

 Statelessness

The REST architecture requires that each request should be treated

as separate and independent transaction. Neither the details of a

client’s request nor the server’s response to it is stored on the server.

While this constraint makes it possible for the API to be scalable, it

also results in increased network traffic as a client may need to send

the same information again and again for subsequent transactions. As

a workaround, techniques such as cookies and session data are often

employed in designing RESTful APIs.

 Client-Server

Due to the fact that the HTTP protocol that drives the REST principle is

also based on the client-server architecture, imposition of this constraint

on REST is obvious. As the main advantage of this, the client and server

can be scaled independently as required. This along with increased

flexibility and reliability are the other advantages.

 Cacheability

REST allows the client to store server responses in a cache. By setting

appropriate response headers such as Cache-Control, Expires, and ETag,

the responses can be stored and reused. This feature reduces the network

traffic and improves the performance. For large-scale applications,

implementing caching can be complex. One also needs to ensure data

consistency by ensuring that stale data is not served.

Chapter 7 reSt apI wIth Django

235

 Layered System

The client-server constraint takes care of the separation of client and

server-side functionality. You can further compose the server component

in more than one layer that are independent of each other. To ensure

improved scalability, the layers are configured to interact only with the

immediate ones and not any other.

 Code on Demand

In any RESTful API, most of the time the server’s response is in serializable

data format such as XML or JSON. However, as per this constraint, the

response can be a certain script, which the client can download and

execute. However, REST applications very seldom gave this feature, since

it can be a potential security threat. The REST architecture specification

stipulates this constraint as optional.

 Serialization

As mentioned earlier, modern web application development adopts

the API-first approach, in which the concept and implementation of

serialization (and deserialization) are of crucial importance. In response

to the client request, the server in a RESTful application needs to send

complex data structures (not just the plain text).

Serialization refers to the conversion of these objects (e.g., the

model objects in a Django app) into a byte stream in a format that can

be easily transferred from the server to the client via HTTP and may

be stored in a disk file or database. On the client end, the byte stream

needs to be converted back into the original state of the object for further

consumption – this process is called deserialization. The Figure 7-2 is

a schematic representation of this process. JSON (JavaScript Object

Notation) is the most preferred data exchange format in API design,

although XML (Extensible Markup Language) is also frequently used.

Chapter 7 reSt apI wIth Django

236

Figure 7-2. Object serialization

Django provides a serialization framework with which you can

translate Django models into JSON, XML, as well as YAML (YAML Ain’t

Markup Language) format. The serializers module in the django.core

package is a collection of several built-in serializer classes that handle

different data formats. The serialize() method serializes a queryset of

Django model objects in the desired format.

JSON serializer serializes the given object to JSON format, the one

most commonly used in Web APIs.

 json = serializers.serialize("json", some_queryset)

Conversely, the deserialize() function obtains the original Python

object. Since the queryset is a list of model objects, you should cast it to

list type.

 objects = list(serializers.deserialize("json", json))

The first argument to the serialize() function is one of the data

formats supported by Django. For example, the following statement

returns the XML representation:

 xml = serializers.serialize("xml", some_queryset)

Chapter 7 reSt apI wIth Django

237

You can even create a Custom Serializer class by subclassing the

Serializer class and implement the functionality for serialization and

deserialization.

from django.core.serializers import Serializer

class MySerializer(Serializer):

 def serialize(self, queryset, **options):

 #serialization logic

 def deserialize(self, queryset, **options):

 #deserialization logic

Once the custom serializer is created, you register it within Django’s

serializer framework so you can use it with the serialize() and

deserialize() functions.

To add your own serializers, use the SERIALIZATION_MODULES

setting:

 SERIALIZATION_MODULES = {

 "myformat": "MySerializer",

 }

The serializers module is primarily designed for exporting models

to the JSON or XML format. However, it’s not suitable for building REST

APIs. First of all, performing serialization and deserialization manually for

every request is error-prone and introduces vulnerabilities. Furthermore,

features such as field validation are not provided by Django’s core

serializers. Hence, Django developers use a third-party app for this

purpose such as Django REST Framework (DRF), which is what you will

learn about in the next sections of this chapter.

Chapter 7 reSt apI wIth Django

238

 Django REST Framework

Django REST Framework is easily one of the most popular reusable apps

in the Django ecosystem. You can add a robust RESTful API to your Django

project with the help of this package. DRF takes you beyond the limitations

of core Django as far as the serialization support is concerned. Django

REST Framework comes with several additional enhancements.

One of the standout features of DRF is the browsable API. Instead

of using other tools and apps (such as cURL, Postman, and others), the

browsable API allows you to test the API endpoints directly in the browser.

DRF supports various authentication schemes and authorization

support such as OAuth2, TokenAuthentication, and JSON Web Token to

secure your API.

Like most open source products, DRF too has a great supportive

community and is used extensively by some of the well-known companies

like Mozilla, Red Hat, and Heroku.

 DRF – Get Started

The Django REST Framework package was first released in 2011. Its latest

version – 3.15.2 – is compatible with the latest versions of Python as well

as Django. Along with this package, you may want to use Markdown and

Pygments to add Markdown support for the browsable API and the syntax

highlighting of Markdown – a popular text-to-HTML conversion tool.

As always, PIP installer is the most convenient tool for Python package

installation:

pip3 install djangorestframework markdown pygments

You need to include the 'rest_framework' app in the list of

INSTALLED_APPS of your Django project, along with the Django app in

which you will define your API endpoints. Assuming that you have already

created a new Django app named myapi in your project, the INSTALLED_

APPS setting should look like

Chapter 7 reSt apI wIth Django

239

INSTALLED_APPS = [

 . . .

 'rest_framework',

 'myapi',

]

The views in Django REST Framework are primarily class-based views.

It does support defining the function-based views in the classical manner,

but the view function is decorated by the @api_view decorator. This

decorator converts the view function into a subclass of APIView class. Note

that the request parameter of the function is an object of Request class in

DRF and not the HttpRequest object. Also, it returns a Response object –

it’s an object of the Response class in the rest_framework.response

module, not the HttpResponse object.

Listing 7-1 defines a simple view function sayHello() that returns a

Hello World JSON response.

Listing 7-1. hello.py

from rest_framework.decorators import api_view

from rest_framework.response import Response

@api_view()

def sayHello(request):

 return Response({"message": "Hello, world!"})

The api_view() decorator has one argument in the form of http_

method_names list. Here, the sayHello() view is invoked in response

to a GET request. For others, the corresponding HTTP verbs should be

included in the list.

@api_view(http_method_names=['GET'])

Chapter 7 reSt apI wIth Django

240

Associate this function with a suitable URL route in the app’s urls

module, as in Listing 7-2.

Listing 7-2. urls.py in app

from django.urls import path

from . import views

urlpatterns = [

 path('hello/',views.sayHello),

]

As a final step, update the project’s URLCONF by including the myapi.

urls module (Listing 7-3).

Listing 7-3. urls.py in project

from django.contrib import admin

from django.urls import include, path

urlpatterns = [

 path('admin/', admin.site.urls),

 path('myapi/', include('myapi.urls')),

]

The browsable API will show up in the browser in response to the URL

http://localhost:8000/myapi/hello/ (refer Figure 7-3) when Django’s

built-in server is launched.

Chapter 7 reSt apI wIth Django

241

Figure 7-3. Browsable API

As mentioned earlier, the browsable API is a unique offering of DRF. It

is an interactive web interface automatically generated for your API

endpoints. The browsable API allows you to perform not only the GET but

POST, PUT, and DELETE requests as well directly from the browser. Hence,

you don’t need tools such as Postman to test and debug your API.

Let us add another view function to this API.

@api_view()

def drfRoute(request):

 return Response({'message': 'REST API designed by Django

REST Framework'})

Chapter 7 reSt apI wIth Django

242

Update the app’s urlpatterns list by including its path:

urlpatterns += [path('drf/', views.drfRoute, name='drf')]

It is always a good practice to define a root endpoint that shows the

links to the other endpoints in your API.

from rest_framework.reverse import reverse

@api_view()

def api_root(request):

 return Response({

 'hello': reverse('hello', request=request),

 'drf': reverse('drf', request=request),

 })

The reverse() function in the rest_framework.reverse module is a

handy shortcut function that returns a fully qualified URL associated with

a view function.

Again, update the urlpatterns list to include the path to the api_root()

function:

urlpatterns += [path('', views.api_root, name='api-root')]

As a result (Figure 7-4), the http://localhost:8000/myapi/ URL in the

browser displays the links to the /hello and /drf endpoints, so your API is

truly browsable.

Chapter 7 reSt apI wIth Django

243

Figure 7-4. Api root

This provides you the glimpse of how an API is built with Django REST

Framework. Obviously, you would like to develop an API that exposes

endpoints for performing the CRUD operations on database models.

For that, you should know how the model objects are serialized in the

JSON format. The Django REST Framework comes with the serializers

module, having different serializer classes, serializer fields, etc.

Chapter 7 reSt apI wIth Django

244

 Serializer Class

Serialization, as you have learned in the previous section, is a process that

transforms data into a format that can be stored or transmitted and then

reconstructed. The built-in serializers in core Django are mainly used

for things like database dumps, importing/exporting data, or integrating

with external systems. On the other hand, the serializers in Django REST

Framework are much more powerful and flexible, designed specifically

for building REST APIs. Some of the key features of serializers in DRF are

the field customization and robust validation capabilities. The views and

routers in DRF are integrated with the serializers.

The rest_framework.serializers module includes various classes

and utilities, such as serialization classes, field classes, and validation

utilities.

The Serializer class defined in this module helps you to covert a Python

object – more specifically an object of Django model into native Python

data type, which then can be rendered in serializable data formats such as

JSON or XML.

Let us start by adding a Django model in our app, as the

Listing 7-4 shows.

Listing 7-4. Ticket model

from django.db import models

class Ticket(models.Model):

 flight_number = models.CharField(max_length=10)

 passenger_name = models.CharField(max_length=100)

 departure_time = models.DateTimeField()

 seat_number = models.CharField(max_length=5)

Yes, you guessed it right, we shall use this model to build a Ticketing

API during the course of this chapter.

Chapter 7 reSt apI wIth Django

245

Next up, define a TicketSerializer class (refer Listing 7-5) with

rest_framework.serializers.Serializer as its base. This class will be

placed inside the serializers.py module. The attributes in the Serializer

class are the objects of serializer field classes, very similar to the model

fields. Ensure that the attributes match with those used in the model class.

Listing 7-5. serializers.py

from rest_framework import serializers

class TicketSerializer(serializers.Serializer):

 flight_number = serializers.CharField(max_length=10)

 passenger_name = serializers.CharField(max_length=100)

 departure_time = serializers.DateTimeField()

 seat_number = serializers.CharField(max_length=5)

Both these classes are placed in the models.py module.

Launch the Django shell and import these two classes.

python manage.py shell

>>> from myapi.models import Ticket

>>> from myapi.serializers import TicketSerializer

Declare a Ticket object:

>>> ticket = Ticket(flight_number='AI123', passenger_

name='John Doe', departure_time='2024-10-05

14:30:00', seat_number='12A')

To serialize the Ticket object, pass it to the TicketSerializer constructor:

>>> serialized_ticket = TicketSerializer(ticket)

Chapter 7 reSt apI wIth Django

246

The Serializer class is characterized by some useful attributes and

methods.

data: This property holds the serialized data of the

Python object.

validated_data: The cleaned and validated data

after calling is_valid() is stored in this property.

This is used to create or update objects during the

deserialization process.

>>> serialized_ticket.data

{'flight_number': 'AI123', 'passenger_name': 'John Doe',

'departure_time': '2024-10-05 14:30:00', 'seat_number': '12A'}

The rest_framework package defines a JSONRenderer for rendering

the serialized data to JSON format.

>>> from rest_framework.renderers import JSONRenderer

>>> json_ticket = JSONRenderer().render(serialized_ticket.data)

>>> print (json_ticket)

b'{"flight_number":"AI123","passenger_name":"John

Doe","departure_time":"2024-10-05 14:30:00","seat_

number":"12A"}'

On the other hand, we can parse the serialized stream to deserialize

this object to Python’s native data types. You will get the dictionary

representation of the original Ticket object.

>>> from rest_framework.parsers import JSONParser

>>> import io

>>> stream = io.BytesIO(json_ticket)

>>> data = JSONParser().parse(stream)

>>> serialized_data=TicketSerializer(data=data)

>>> serialized_data.is_valid()

Chapter 7 reSt apI wIth Django

247

True

>>> print (serialized_data.validated_data)

{'flight_number': 'AI123', 'passenger_name': 'John Doe',

'departure_time': datetime.datetime(2024, 10, 5, 14, 30,

tzinfo=zoneinfo.ZoneInfo(key='UTC')), 'seat_number': '12A'}

Obviously, we would like the serialization to be performed inside the

views. Before we actually write the views to handle the CRUD operations,

we need to carefully design and develop the endpoints of our API. An API

endpoint is actually a specific URL route that will be exposed to the API

clients. They send their requests to the endpoints in order to access the

resources made available by the API server.

As mentioned earlier, we shall be developing a Ticketing API, where

all the CRUD operations will be done on the Ticket model. Since myapi is

the name of our Django app, it will be the preceding part of the endpoint,

followed by an identifier referring to either a collection of resources or a

specific instance of the resource. The HTTP method used to invoke the

endpoint indicates the type of operation to be performed.

In the case of this Ticketing API, the /myapi/tickets endpoint called

with the GET method conventionally retrieves all the instances of Ticket

model, and the same endpoint called with the POST method is linked to

the creation of a new Ticket instance. On the other hand, the /myapi/

tickets/id endpoint called with PUT and DELETE methods is assumed to

perform the UPDATE and DELETE operations.

Endpoint Method Operation

/myapi/tickets get List of tickets

/myapi/tickets poSt Create a new ticket

/myapi/ticket/id get retrieve a ticket

/myapi/ticket/id pUt Update a ticket

/myapi/ticket/id DeLete Delete a ticket

Chapter 7 reSt apI wIth Django

248

Django REST Framework has a unique Router class that provides an

automatically generated root view. You shall learn about this in one of the

subsequent sections.

 Serializer Fields

The attributes of a Serializer class are the objects of Field classes. Much like

the Form fields, the serializer fields handle the conversion between model

attributes and serializable objects, as well as the validation part.

The field types in Django REST Framework are more or less the same

as Django’s Form fields; some of them are

• BooleanField

• CharField

• IntegerField

• FloatField

• DateTimeField

• EmailField

Each of these field types has its own validation mechanism. For

example, the UniqueValidator enforces the unique=True constraint on

model fields. The arguments used in the construction of fields, such as

max_length, min_value, max_value, etc., act as validation constraints.

 Serializer Methods

is_valid(): This method checks if the data provided

is valid as per the validation rules of the serializer.

validate(): This is the object-level validation

method, used to perform validation on the entire

object. You may override this method in your

serializer class to add custom validation logic.

Chapter 7 reSt apI wIth Django

249

save(): This method saves the validated data,

usually by creating or updating an instance. If your

serializer needs a custom logic for saving the data,

this method may be overridden accordingly.

create(): This is a method used to create a new

instance when calling save() with deserialized data.

Normally you would override this method when

handling object creation for custom serializers.

update(): An existing instance is updated when

calling save() with deserialized data.

 ModelSerializer

More often than not, the serializer fields correspond to the model fields.

So here is a shortcut approach. The ModelSerializer class automatically

maps its field attributes to the model attributes of its inner Meta class.

Moreover, the ModelSerializer also generates the required validators.

In other words, the ModelSerializer class is a specialized Serializer class

that automatically generates the fields for you, based on the model. It

also includes simple default implementations of create() and update()

methods.

We have already declared the Ticket model; let us migrate it to a

corresponding database table. Create the object as in the previous section,

and save it to the database.

>>> from myapi.models import Ticket

>>> ticket = Ticket(flight_number='AI123', passenger_

name='John Doe', departure_time='2024-10-05

14:30:00', seat_number='12A')

>>> ticket.save()

Chapter 7 reSt apI wIth Django

250

Similarly, go ahead and add a few more instances of the Ticket model.

Let us change the TicketSerializer class to make it a subclass of

ModelSerializer. As the Listing 7-6 shows, we need not define the

individual field attributes. Instead, tell Django to map the fields of Django

models to corresponding serializer fields.

Listing 7-6. ModelSerializer

from rest_framework import serializers

from .models import Ticket

class TicketSerializer(serializers.ModelSerializer):

 class Meta:

 model = Ticket

 fields = "__all__"

Here, Meta is an inner class that provides metadata about the serializer.

Two essential attributes to define in the Meta class are model and fields.

The model attribute is actually the Django model to be mapped to the

serializer (in this case, the Ticket model). The fields attribute is the list of

model fields to be included in the serialized representation.

You can either give the list of fields explicitly such as

fields = ['passenger_name', 'passenger_name', 'seat_number']

or set the property to all fields:

fields = "__all__"

You can also ask certain fields to be excluded.

exclude = ['field1', 'field2']

Chapter 7 reSt apI wIth Django

251

We shall now define a tickets() view that renders a serialized

representation of the objects from the Ticket model (Listing 7-7). In other

words, this will be the implementation of GET request in our Ticketing API.

Listing 7-7. Using serializer in DRF view

from .models import Ticket

from .serializers import TicketSerializer

@api_view()

def tickets(request):

 tickets = Ticket.objects.all()

 serialized_tickets = TicketSerializer(tickets, many=True)

 return Response(serialized_tickets.data)

Update the app’s urlpatterns list by including the URL mapping for the

tickets() view.

urlpatterns += [path('tickets/', views.tickets,

name='tickets')]

Visit the URL http://localhost:8000/myapi/tickets/ in your browser to

get the JSON response containing the list of tickets, as in the Figure 7-5.

Chapter 7 reSt apI wIth Django

252

Figure 7-5. JSON response

Since the ‘tickets/’ endpoint is used for both the GET and POST

methods, the mapped tickets() view function should process both the

request types. The @api_view decorator on the top should be instructed to

allow both the methods.

@api_view(['GET', 'POST'])

Chapter 7 reSt apI wIth Django

253

When the same view is called with the POST request, it comes with the

body parameters passed by the client. The browsable API of Django REST

Framework lets you pass the data in a JSON format when the POST request

is used to visit the ‘tickets/’ endpoint.

To create a new Ticket instance, you need to construct the

TicketSerializer object using the request data. After verifying its validity,

the save() method is called to persist the Ticket instance in the database.

This logic is implemented by adding the conditional block inside the

tickets() function in the Listing 7-8.

Listing 7-8. GET and POST with serialized view

from rest_framework import status

@api_view(['GET', 'POST'])

def tickets(request):

 if request.method=='GET':

 tickets = Ticket.objects.all()

 serialized_tickets = TicketSerializer(tickets,

many=True)

 return Response(serialized_tickets.data)

 elif request.method=='POST':

 serialized_ticket = TicketSerializer

(data=request.data)

 serialized_ticket.is_valid(raise_

exception=True)

 serialized_ticket.save()

 return Response(serialized_ticket.validated_

data,status.HTTP_201_CREATED)

The browsable API page (Figure 7-6) displays the list of all instances

as before. However, when you scroll down the page, a POST section is

present. Enter the JSON representation of a new Ticket object to be created

in the Content box, and press the POST button at the bottom.

Chapter 7 reSt apI wIth Django

254

Figure 7-6. POST form in the browsable API

Note that both the GET and POST methods are allowed for the tickets/

endpoint. The POST request is processed with 201 response, as in

Figure 7-7, indicating that a new resource has been successfully created.

Chapter 7 reSt apI wIth Django

255

Figure 7-7. POST endpoint returning 201 response

The other API endpoint that we have planned earlier is /myapi/

ticket/id, where id is the primary key for the Ticket object to be retrieved,

updated, or deleted. We need to map this URL route to the ticket() view

function that has an int path parameter. Accordingly, let us update the

urlpatterns list by adding a path:

urlpatterns += [path('ticket/<int:id>', views.ticket,

name='ticket')]

Note that the URL pattern ticket/id is the same for GET (a single Ticket

resource), PUT (update a Ticket), and DELETE (delete a Ticket); the

@api_view() decorator must be configured to allow these methods.

@api_view(['GET','PUT', 'DELETE'])

Chapter 7 reSt apI wIth Django

256

The decorated ticket() function fetches the path parameter, retrieves

the object with the corresponding primary key, and processes the three

HTTP requests with three conditional blocks inside it.

The GET request handling is straightforward (Listing 7-9); return the

serialized object to the client.

Listing 7-9. GET, PUT, and DELETE in serialized view

@api_view(['GET','PUT', 'DELETE'])

def ticket(request, id):

 ticket = Ticket.objects.get(pk=id)

 if request.method=='GET':

 serialized_ticket = TicketSerializer(ticket)

 return Response(serialized_ticket.data)

To handle the PUT request, the request data is used to update one

or more attributes of the Ticket object. In this case, we update the flight

number of an existing booking.

 elif request.method=='PUT':

 ticket.flight_number = request.data['flight_number']

 ticket.save()

 serialized_ticket=TicketSerializer(ticket)

 return Response(serialized_ticket.data, status=400)

The DELETE handler block simply calls the delete() method on the

ticket object.

 elif request.method=='DELETE':

 ticket.delete()

 return Response(status=status.HTTP_204_NO_CONTENT)

Chapter 7 reSt apI wIth Django

257

In response to the URL http://localhost:8000/myapi/ticket/1, the

browsable API returns the Ticket instance with the corresponding primary

key (GET operation), which you can delete – the DELETE button appears

in the response, as in Figure 7-8.

Figure 7-8. Browsable API with the DELETE button

Scroll down the page to locate the PUT section (Figure 7-9), enter the

value for the flight number to be updated, and click the PUT button.

Chapter 7 reSt apI wIth Django

258

Figure 7-9. PUT form in the browsable API

So here is a complete API, capable of serving the GET, POST, PUT, and

DELETE requests from any HTTP client. DRF’s built-in Browsable API

feature is extremely useful to test the API endpoints. However, you may use

any other tool, such as Postman, HTTPie, or even the cURL command-

line tool.

Figure 7-10 shows the GET request being tested in the HTTPie app.

Chapter 7 reSt apI wIth Django

259

Figure 7-10. Testing API endpoints with HTTPie

 HyperlinkedModelSerializer

A specialized variant of ModelSerializer, the HyperlinkedModelSerializer –

as the name implies – uses hyperlinks instead of the primary keys to

represent the relationships between objects.

This is particularly useful for APIs where you want to expose related

objects via their URLs, making the API more intuitive and navigable.

This serializer uses a url field instead of a primary key field. The

url field is a serializer field of the type HyperlinkedIdentityField. Any

relationships on the model will be represented in this field.

Chapter 7 reSt apI wIth Django

260

You need to explicitly include the primary key by adding it to the fields

option. The Meta subclass in this serializer for the Ticket model should

include a fields attribute as

fields = ['url', 'flight_number', 'passenger_name', 'departure_

time', 'seat_number']

You should also include the extra_kwargs attribute that determines

how the URL is formed, by specifying the view_name and the lookup_

fields properties.

By default, the view_name property should be set to the style ‘{model_

name}-detail’, and lookup_field takes pk as its values. You can, of course,

override both by setting appropriate values. We shall stick to the defaults,

although it is better to set them explicitly.

extra_kwargs = {'url': {'view_name': 'ticket-detail', 'lookup_

field': 'pk'}

As a result, each resource in the Ticket model will be represented as a

hyperlink in this form:

http://localhost:8000/myapi/ticket/1

Hence, the TicketSerializer class will now be derived from

HyperlinkedModelSerializer, and its definition is shown in Listing 7-10.

Listing 7-10. HyperlinkedModelSerializer class

from rest_framework import serializers

from .models import Ticket

class TicketSerializer(serializers.HyperlinkedModelSerializer):

 class Meta:

 model = Ticket

 fields = ['url', 'flight_number', 'passenger_name',

'departure_time', 'seat_number']

Chapter 7 reSt apI wIth Django

261

 extra_kwargs = {

 'url': {'view_name': 'ticket-detail', 'lookup_

field': 'pk'}

 }

We also need to ensure that the view function that handles the GET

and POST requests should be in the form model_list and the function that

handles GET, PUT, and DELETE requests for a single model instance as

model_detail. Also, the name of the view in the URL mapping should be in

the form model-list and model-detail So we need to change the function

names to ticket_list() and ticket_detail().

So let us update the urlpattern of the API as

urlpatterns = [

 path('tickets/', views.ticket_list, name='ticket-list'),

 path('ticket/<int:pk>/', views.ticket_detail, name='ticket-

detail'),

]

Another crucial requirement for the HyperlinkedSerializer is that

we pass the request object to the serializer’s context. This is required to

correctly generate the full URL for the serialized object.

Accordingly the earlier tickets() view function is renamed as ticket_

all(), and while handling the GET request, the TicketSerializer object

is obtained as

serializer = TicketSerializer(tickets, many=True,

context={'request': request})

Similarly, inside the conditional block that handles the POST request,

the context data must be passed to the TicketSerializer constructor.

serializer = TicketSerializer(data=request.data,

context={'request': request})

Chapter 7 reSt apI wIth Django

262

No other changes are needed in the function that processes the GET

and POST requests.

On similar lines, you should rename the earlier ticket() view function

to ticket_detail() and pass Request object as the context while instantiating

the TicketSerializer object.

For GET request:

serializer = TicketSerializer(ticket, context={'request':

request})

and for PUT request:

serializer = TicketSerializer(ticket, data=request.data,

context={'request': request})

The complete code for the API with HyperlinkedModelSerializer can

be accessed from the book’s GitHub repository.

How does the browsable API show the effect of these changes? Well,

incorporate all the above changes, fire the Django development server, and

point your browser to http://localhost:8000/tickets/.

Chapter 7 reSt apI wIth Django

263

Figure 7-11. Response with HyperlinkedModelSerializer

As can be seen in Figure 7-11, the JSON representation of each ticket

instance has a url attribute with a hyperlink to its detailed representation –

such as http://localhost:8000/ticket/1, which, when clicked, shows up

in the browser with the provision to perform GET, PUT, and DELETE

operations.

Chapter 7 reSt apI wIth Django

264

 DRF – Class-Based Views

As mentioned earlier, the views in DRF are primarily class based. Even

though you used the classical function-based views in the previous

section, you must have noticed that the view functions are annotated by

@api_view(), which converts it as a subclass of the APIView class.

Remember you also learned about class-based views in core Django?

A class in a core Django app with the View class from the django.views

module was used as its base. In the Django REST Framework, we have the

rest_framework.views module that includes the APIView class. The DRF

class-based view is a class that inherits the APIView class. Note that the

APIView class is also based on Django’s View class.

Just as Django’s CBV, the APIView subclass also includes the get(),

post(), put(), and delete() methods that handle the corresponding HTTP

requests. The functionality of these methods is much the same as the

conditional blocks in the view functions – ticket_list() and ticket_

detail().

In the beginning of our discussion on DRF and serialization, we had

identified two API endpoints:

/myapi/tickets/: To process the GET method

(retrieve all tickets) and POST method (create a

new ticket)

/myapi/ticket/id: To process the GET method

(retrieve a given ticket), PUT method (update a

ticket) and DELETE method (delete a ticket)

Hence, we need to design two subclasses of the APIView class:

TicketListView having get() and post() methods and TicketDetailView

having get(), put(), and delete() methods. Recollect the fact that you need

to use the as_view() method of these classes to map the URL with the

path() function to build the urlpatterns list.

Chapter 7 reSt apI wIth Django

265

urlpatterns = [

 path('tickets/', views.TicketListView.as_view(),

name='ticket-list'),

 path('ticket/<int:pk>/', views.TicketDetailView.as_view(),

name='ticket-detail'), exists

]

As mentioned above, the TicketListView (the APIView subclass)

defined the get() and post() methods. The get() method returns the

serialized data of all the Ticket instances. The post() method serializes the

data in the request body and saves it as a new Ticket instance.

Listing 7-11. TicketListView

from rest_framework.views import APIView

from rest_framework import status

from rest_framework.response import Response

from .models import Ticket

from .serializers import TicketSerializer

class TicketListView(APIView):

 def get(self, request):

 tickets = Ticket.objects.all()

 serialized_tickets = TicketSerializer(tickets,

many=True)

 return Response(serialized_tickets.data)

 def post(self, request):

 serialized_ticket = TicketSerializer(data=request.data)

 serialized_ticket.is_valid(raise_exception=True)

 serialized_ticket.save()

 return Response(serialized_ticket.validated_

data,status.HTTP_201_CREATED)

Chapter 7 reSt apI wIth Django

266

Note that the get() and post() methods (in the Listing 7-11) each

perform exactly the same steps as you find in the conditional code blocks

in the ticket_all() view function.

Keeping this fact in mind, you can easily design the TicketDetailView

class. All you need to do is put the conditional blocks from the ticket_

detail() view functions in the corresponding methods – get(), put(), and

delete() methods.

When the development server is launched, your API works exactly as

before. Figure 7-12 shows a screenshot of the request to display the details

of the ticket instance with 1 as its primary key.

Figure 7-12. Using APIView

Chapter 7 reSt apI wIth Django

267

 DRF – Generic Views

Again, you might recollect that you learned about the generic views in

core Django as well. They (like ListView, DetailView, CreateView, etc.)

are designed to be used in a classical web application that serves HTML

templates. These views help you write concise code to perform the CURD

operations (CRUD) on models and work well with Django’s form system.

The generic views in Django REST Framework, on the other hand,

are specifically designed to handle API requests and render serialized

responses. While the function-based and class-based views are more

verbose, the generic views in DRF simplify the creation of RESTful APIs

that map closely to the database models by automating common actions

while handling different HTTP methods.

The rest_framework.generics module defines the GenericAPIView

class (which in fact extends the APIView class) that acts as the parent

class for other concrete generic class-based views. As in the case of the

core Django generic classes, in the case of DRF also, you need to design a

custom class with one of the generic classes as the parent.

Different generic view classes in the generics module can be clubbed

in two categories. In the first category, there is a separate view class that

handles each of the HTTP methods.

ListAPIView: A subclass of this view class handles

the GET method that is to be mapped to a read-only

API endpoint and fetches a collection of resources of

a certain type (all the tickets in the Ticket model in

this case).

CreateAPIView: This view corresponds to the POST

request, responsible for creating a new instance of

the given model.

Chapter 7 reSt apI wIth Django

268

RetrieveAPIView: This view is responsible for

handling a GET request that retrieves a single

instance of the given model.

UpdateAPIView: As you would imagine, a subclass

of this view class is mapped to the endpoint that will

perform the UPDATE operation on a single model

instance, in response to the PUT request.

DestroyAPIView: Finally, this view handles a

DELETE method, causing a single model instance to

be removed.

The subclasses of these views follow a similar syntax pattern:

from rest_framework import generics

class Class_name(generics.XXXAPIView):

 queryset = Ticket.objects.all()

 serializer_class = TicketSerializer

Here, XXX will be List, Create, Retrieve, Update, or Destroy. Let us

assume the names of respective classes would be TicketList, NewTicket,

TicketDetail, TicketUpdate, and TicketDelete.

As you must have noted, each of these views handles a different

request. Hence, you need to form a different API endpoint to map

with each.

Hence, the urlpatterns list has the following structure:

urlpatterns = [

 path('tickets/list/', views.TicketList.as_view()),

 path('tickets/new/', views.TicketNew.as_view()),

 path('tickets/detail/<int:pk>/', views.TicketDetail.as_

view()),

Chapter 7 reSt apI wIth Django

269

 path('tickets/update/<int:pk>/', views.TicketUpdate.as_

view()),

 path('tickets/delete/<int:pk>/', views.TicketDelete.as_

view()),

]

The second category of classes in the generics module combines

handling of more than one HTTP method.

Recall that we had two function-based views. The tickets() view

function to process a GET method to fetch all the model instances and

to create a new instance. The ticket() view function deals with the

request that retrieves, updates, and deletes a single model instance. We

had also registered two URL endpoints mapped to them: ‘tickets/’ and

‘ticket/<int:pk>/’.

On similar lines, we have four different concrete generic view classes

that combine more than one request handler.

ListCreateAPIView: Subclass this view to fetch all

the model instances in response to a GET request

and as a POST handler to create a new instance.

RetrieveUpdateAPIView: If you need to define a

single endpoint for retrieval and update of a single

instance, define a subclass of this view.

RetrieveDestroyAPIView: Similarly, define a class

with this generic class as the parent if you need to

have an endpoint that sends requests for retrieval

and deletion of a single resource.

RetrieveUpdateDestroyAPIView: This is a generic

class that works as a handler for requests of the type

retrieval, update, and deletion of a single instance.

Chapter 7 reSt apI wIth Django

270

Generally, an API has two URL endpoints for performing the CRUD

operations: one for fetching all instances and creating a new instance

and the other to handle READ, UPDATE, and DELTE requests on a single

instance.

Hence, the usual practice is to define a subclass of

ListCreateAPIView (for the first endpoint) and another subclass of

RetrieveUpdateDestroyAPIView (to be mapped with the second endpoint).

class TicketListCreateView(generics.ListCreateAPIView):

 queryset = Ticket.objects.all()

 serializer_class = TicketSerializer

class TicketRetrieveUpdateDeleteView(generics.

RetrieveUpdateDestroyAPIView):

 queryset = Ticket.objects.all()

 serializer_class = TicketSerializer

Accordingly, the urlpatterns list defines the URL mapping with

these views:

urlpatterns = [

 path('tickets/', views.TicketListCreateView.as_view(),

name='ticket-list'),

 path('tickets/<int:pk>/', views.TicketRetrieve

UpdateDeleteView.as_view(), name='ticket-

detail'),

]

Look how compact the API design has become with the use of these

compound generic views. Another noteworthy feature of these generic

views is that while testing the endpoints with the browsable API –

especially those handling the POST and PUT requests – you get a nice

HTML form (refer Figure 7-13) to send the request body data (the option to

send it in JSON format is always there).

Chapter 7 reSt apI wIth Django

271

Figure 7-13. Generic views provide an HTML form for the
POST method

 ViewSets

The Django REST Framework offers another feature of ViewSet classes with

which writing the CRUD operations becomes even more concise. In the

previous section, you used two compound generic view classes – one to

handle the list and create operations and the other to process the retrieve,

update, and delete operations. With the ViewSet, a single class holds the

handler methods for all the operations. The ViewSet class is defined in

the rest_framework.viewsets module. Although the ViewSet is a type of

Chapter 7 reSt apI wIth Django

272

class-based view, it doesn’t include HTTP handler methods - like get() or

post() - Instead, the names of the methods are indicative of the action to be

performed – such as list(), create(), retrieve(), update(), and destroy()

methods. These methods are bound to the HTTP methods when you map a

URL endpoint to the as_view() method of the ViewSet. We shall shortly find

out how the binding of the viewset actions with HTTP methods works.

 ModelViewSet

In most use cases, we define a subclass of ModelViewSet class (instead

of the ViewSet class); it includes the default implementations of actions

(list(), retrieve(), create(), update(), and destroy()). As you would

expect, the ModelViewSet class extends the GenericAPIView class. Hence,

you need to set the queryset and serializer_class attributes.

Let us define a ModelViewSet class to handle the serialization of Ticket

models, as in Listing 7-12.

Listing 7-12. Using ModelViewSet

from rest_framework import viewsets

from .models import Ticket

from .serializers import TicketSerializer

class TicketViewSet(viewsets.ModelViewSet):

 queryset = Ticket.objects.all()

 serializer_class = TicketSerializer

As mentioned earlier, the ViewSet actions are bound with the required

HTTP methods to let Django know which type of HTTP requests you want

to be processed when a particular endpoint is accessed. To maintain the

consistency with the previous examples, when the client hits the ‘tickets/’

URL with the GET request, it should perform the list() action; for POST

request, the create() action should be invoked. This association is spelled

out as a dict argument to the as_view() method of the ViewSet class.

Chapter 7 reSt apI wIth Django

273

urlpatterns = [

 path(

 'tickets/', views.TicketViewSet.as_view(

 {'get': 'list', 'post': 'create'}

), name='ticket-list'),

 path(

 'ticket/<int:pk>/', views.TicketViewSet.as_view(

 {'get': 'retrieve', 'put': 'update', 'delete':

'destroy'}

), name='ticket-detail')

]

Note that the ‘ticket/<int:pk>/’ URL invokes the retrieve(),

update(), and destroy() actions, respectively, in the case of HTTP

requests of the type GET, PUT, and DELETE.

 Routers

Normally, you don’t explicitly register the views in a viewset in the

URLCONF as done here; instead, you’ll register the viewset with a router

class, which automatically creates the associations between the URLs

and views.

The rest_framework.routers module includes the definitions of

router classes. With the routers, you can quickly wire up your view logic to

a set of URLs.

So far our approach to establish URL routing has been to construct

the urlpatterns of a Django app and then include it in the URLCONF of

the Django project. When using the routers, the urlpatterns of the app

are no longer needed. All you need to do is to call the register() method

of a Router class, which will automatically generate the urlpatterns for a

given viewset. You can then include the urls property of the Router in the

URLCONF of the project. Effectively, the need of the urlpatterns list of the

Django app is eliminated.

Chapter 7 reSt apI wIth Django

274

The routers module includes two classes: SimpleRouter and

DefaultRouter. While the behavior is more or less the same, the

DefualtRouter generates an additional root view that returns a response

containing hyperlinks to all the list views.

To let DRF generate the urlpatterns, obtain an object of DefaultRouter

class and call its register() method, as the Listing 7-13 does.

Listing 7-13. Registering router

from rest_framework.routers import DefaultRouter

from myapi.views import TicketViewSet

router = DefaultRouter()

router.register('tickets', TicketViewSet)

The register() method needs two arguments:

prefix: A string that serves as the URL prefix for the

viewset. In the above example, the value of prefix

is ‘tickets’, which means that the URLs for listing,

creating, retrieving, updating, and deleting tickets

will be prefixed with /tickets/.

viewset: The viewset class you want to associate

with this prefix. This should be a subclass of ViewSet

or ModelViewSet that defines the actions (list,

create, retrieve, update, destroy) you want.

The various HTTP methods, the ViewSet actions bound to them,

and the corresponding auto-generated URL routes are summarized in

Table 7-1.

Chapter 7 reSt apI wIth Django

275

Table 7-1. URL routes of ViewSet

URL Route HTTP Method Action URL Name

myapi/ get automatically generated

root view

api-root

myapi/tickets/ get list() ticket-list

poSt create()

myapi/tickets/pk get retrieve() ticket-detail

pUt update()

DeLete destroy()

Once this is done, the auto-generated urlpatterns are added to the

urlpatterns list of the Django project (not the Django app).

urlpatterns = [

 path('admin/', admin.site.urls),

 path('myapi/', include(router.urls)),

]

The URL http://localhost:8000/myapi/ is the Api root of your REST

server. Check if the browser output is as shown in Figure 7-14.

Chapter 7 reSt apI wIth Django

276

Figure 7-14. Auto-generated Api root

 DRF – Authentication

How does the authentication work? The user authentication is performed

before the execution of a view mapped to a certain URL route. It is only

after the user is authenticated that the view code is processed.

You have already learned how the authentication system works in

the core Django, wherein once the user is logged in, multiple requests

may be handled till they log out – that is till the session lasts. The Django

REST Framework expands on it specifically for the API scenario. As you

know, the API interactions are REST compliant, which means that they are

stateless.

Chapter 7 reSt apI wIth Django

277

Another important point of difference in how the authentication works

in Django and DRF is that in the case of the former, it relies on session

authentication, whereas there are multiple authentication schemes

available for the latter.

Apart from Django’s default session authentication, Django

REST Framework provides out-of-the-box support for the following

authentication schemes:

BasicAuthentication: Under this type of

authentication, the client includes the username

and password of the user with each request. It is

recommended for testing purpose and not suitable

for the production environment as including

the user credentials in the request poses a

security threat.

TokenAuthentication: This is a much more robust

option for authentication of client requests where a

unique token is generated for each user and that is

sent with each request as the Authorization header.

With the Ticketing API that we now have, any user can perform any

ticketing operations. Ideally, you would like to restrict the access to only

those users who have been authenticated, and the user is authorized to

perform the operation.

As you install Django REST Framework, you need to include the REST_

FRAMEWORK section in the settings.py module of your project. Here,

you specify the global authentication schemes to be used. Let us include

BasicAuthentication and SessionAuthentication as the DEFAULT_

AUTHENTICATION_CLASSES:

REST_FRAMEWORK = {

 'DEFAULT_AUTHENTICATION_CLASSES': (

 'rest_framework.authentication.BasicAuthentication',

Chapter 7 reSt apI wIth Django

278

 'rest_framework.authentication.SessionAuthentication',

)

}

Also, the DEFAULT_PERMISSION_CLASSES variable sets the

permission types globally.

REST_FRAMEWORK = {

 'DEFAULT_PERMISSION_CLASSES': [

 'rest_framework.permissions.IsAuthenticated',

]

}

To enforce the permission on the view, include the

permission_classes attribute in our TicketViewSet class (Listing 7-14).

Listing 7-14. permission_classes attribute

from rest_framework.permissions import IsAuthenticated

class TicketViewSet(viewsets.ModelViewSet):

 queryset = Ticket.objects.all()

 serializer_class = TicketSerializer

 permission_classes = [IsAuthenticated]

As a result, the ‘tickets/’ endpoint responds with a 403 Forbidden

message. Obviously, this means that the client needs to log in as one of the

users in the User model in the contrib.auth package.

You can first visit the admin site URL, log in, and then fire a request to

the ‘tickets/’ endpoint to get past the IsAuthenticated permission and

obtain the list of tickets as the response. Instead, you can add the login

view to the browsable API itself. Include rest_framework.urls in the

URLCONF of your project.

Chapter 7 reSt apI wIth Django

279

urlpatterns += [

 path('', include('rest_framework.urls')),

]

The browsable API shows a Login link toward the top right of the

browser, as the Figure 7-15 shows.

Figure 7-15. Unauthenticated request

This link takes the browser to the login page of the admin site. After

successfully logging in, the browser returns to the view protected with the

IsAuthenticated permission.

Chapter 7 reSt apI wIth Django

280

 TokenAuthentication

Using BasicAuthentication is simple but poses a considerable security risk

as the user credentials are included with each request. Apart from testing

purpose, it is not advisable to be used in the production environment.

The other authentication scheme that DRF supports is

TokenAuthentication. It can be effectively implemented in situations

where client-server setups are required.

To enable this scheme globally, it should be added to the list of

DEFAULT_AUTHENTICATION_CLASSES:

REST_FRAMEWORK = {

 'DEFAULT_AUTHENTICATION_CLASSES': [

 'rest_framework.authentication.BasicAuthentication',

 'rest_framework.authentication.SessionAuthentication',

 'rest_framework.authentication.TokenAuthentication',

]

}

Additionally, the list of INSTALLED_APPS should have the rest_

framework.authtoken app added in it.

INSTALLED_APPS = [

 . . .

 'rest_framework.authtoken',

 . . .,

]

This app needs the authtoken model to be added to the current

database. Hence, you need to run the migrations:

python manage.py migrate

Operations to perform:

Chapter 7 reSt apI wIth Django

281

 Apply all migrations: admin, auth, authtoken, contenttypes,

myapi, sessions

Running migrations:

 Applying authtoken.0001_initial... OK

 Applying authtoken.0002_auto_20160226_1747... OK

 Applying authtoken.0003_tokenproxy... OK

 Applying authtoken.0004_alter_tokenproxy_options... OK

To understand how the token authentication works, let us define a

function-based view in the views.py module. Unlike in the viewset, in a

function-based view, the authentication is enforced by the @permission_

classes annotation.

from rest_framework.decorators import api_view,

permission_classes

@api_view()

@permission_classes([IsAuthenticated])

def authenticated_view(request):

 return Response({"message":"Hello, This is a

protected view"})

Obviously, you need to add a path that maps an endpoint (‘secured/’)

with this function. When visited, the authentication naturally fails, and you

get the HTTP 401 Unauthorized response with an appropriate WWW-

Authenticate header.

WWW-Authenticate: Basic realm="api"

Token authentication mechanism involves generating a token and then

including it as a Header in the request. A token is a long alphanumeric

string that is a unique identity of the user.

Chapter 7 reSt apI wIth Django

282

The TokenAuthentication class defines the obtain_auth_token view,

which, when invoked with POST request, returns the token string. Let us

add a URL route that invokes this view in the URLCONF of the Django

project.

from rest_framework.authtoken.views import obtain_auth_token

from myapi import views

urlpatterns += [

 path('secured/', views.authenticated_view),

 path('api-token/', obtain_auth_token),

]

To generate the Auth token, log in to the admin site of your

Django application. You will find the AUTH TOKEN section in the site

administration page. Refer to the Figure 7-16.

Figure 7-16. Tokens model

Chapter 7 reSt apI wIth Django

283

Choose the admin user and save the Auth token generated for it

(Figure 7-17).

Figure 7-17. Adding a token

Chapter 7 reSt apI wIth Django

284

As you can see in Figure 7-18, under the list of generated tokens, you’ll

now find the token key corresponding to admin user.

Figure 7-18. Token key

Chapter 7 reSt apI wIth Django

285

Now that the token is generated, go back and visit the endpoint

(Figure 7-19) that runs the protected view in your API; the browser displays

its response after it passes the authentication.

Figure 7-19. Authenticated view

Chapter 7 reSt apI wIth Django

286

You also have the option to use any third-party HTTP client. Here, we

use HTTPie to obtain the token, as the Figure 7-20 shows.

Figure 7-20. Token generation with HTTPie

Then, include the generated token in the Authorization header when

visiting the URL to your protected view to obtain its response (Figure 7-21).

Chapter 7 reSt apI wIth Django

287

Figure 7-21. Authenticated response in HTTPie

You can generate the token Django’s drf_create_token management

command made available by the 'rest_framework.authtoken' app you

had included in the project’s settings. Execute the following statement in

the command terminal of your operating system. You need to specify the

user for which the token is to be created.

python manage.py drf_create_token admin

Generated token 9c9ca1bf12b06319ddc7763ebd1bb20d8fa55faf for

user admin

Chapter 7 reSt apI wIth Django

288

While in the command terminal, this cURL command will fetch you

the response of the protected view in your API.

curl -H "Authorization: Token

9c9ca1bf12b06319ddc7763ebd1bb20d8fa55faf" http://

localhost:8000/secured/

{"message":"Hello, This is a protected view"}

In addition to these built-in authentication schemes, many third-party

Django apps are also available. For example, the djangorestframework-

simplejwt package is a JWT plug-in for Django REST Framework. It

implements the JSON Web Token (JWT) authentication. Then there is also

the django-oauth2 package that adds the OAuth2Authentication to your

DRF app. However, the discussion of these types of authentication has

been excluded from the scope of this book.

 Alternatives to DRF

Django REST Framework is by far the most powerful Django app when

it comes to building REST APIs. It comes with all the necessary features

(such as authentication, permission handling, pagination, etc.). Having

said that, there are a few other Django packages for API creation, each with

its own distinct features.

Django Ninja is one such reusable app in the Django ecosystem. It

leverages the features of modern Python such as async support and type

hints to build high-performance and lightweight APIs. We shall explore

this app in the next section.

Tastypie has been in use as a tool for API development. However, it

hasn’t been able to match with DRF in offering a number of advanced

features.

Chapter 7 reSt apI wIth Django

289

The Graphene-Django package lets you develop GraphQL APIs rather

than REST APIs. Its ability to integrate with Django models is one of its

important features. We shall discuss Graphene-Django in a later chapter.

Django Channels is an ideal choice if you intend to have Python

applications having WebSocket support along with the regular REST API

endpoints. You will know more about Channels later in the book.

 Django Ninja

This is one app that has been making rapid strides in the popularity

rankings of Django packages. Django Ninja, with its ability to leverage

Python features like async support and type hints, lets you build

lightweight yet high-performance APIs. Django Ninja is highly inspired by

FastAPI, another popular asynchronous web framework.

Like FastAPI, Django Ninja also uses Pydantic for request and

response data validation. Django Ninja also provides the auto-generated

API documentation with Swagger UI.

Let us go ahead and build a ticketing API with Django Ninja. To start

with, install it with the PIP utility.

pip install django-ninja

This installs the required dependencies – annotated-types, pydantic,

and typing-extensions.

Just like any other reusable app, add ninja to the INSTALLED_APPS list

(along with your testing API app named as api).

INSTALLED_APPS = [

 . . . ,

 'ninja',

 'api',

]

Chapter 7 reSt apI wIth Django

290

An object of NinjaAPI class in the ninja package is the main application

object. It is responsible for managing the API endpoints, automatic

documentation, Pydantic integration, etc. Apart from the others, its

decorator methods – @api.get(), @api.post(), @api.put(), and @api.

delete() – help in defining the API endpoints.

These decorator methods map a given endpoint to a view function

defined just below it. Let’s define a /hello endpoint (refer Listing 7-15)

that, when visited with a GET request, calls the test() view function and

renders a Hello World response.

Listing 7-15. NinjaAPI object

from ninja import NinjaAPI

api = NinjaAPI()

@api.get("/hello")

def test(request):

 return {'message': 'Hello World!'}

As usual, you need to update the URLCONF of the Django project by

including the api/ as the base URL to the endpoints in your app.

from django.contrib import admin

from django.urls import path

from api.views import api

urlpatterns = [

 path('admin/', admin.site.urls),

 path('api/', api.urls)

]

As usual, you obtain the Hello World response with the

http://localhost:8000/api/hello route. One of the important features of

Django Ninja – the auto-generated API documentation will be available

http://localhost:8000/api/docs URL in the browser.

Chapter 7 reSt apI wIth Django

291

Figure 7-22. Swagger Docs

Test the GET response by executing the mapped method. The OpenAPI

(known as Swagger UI) documentation reveals the cURL equivalent

of the request, the response body along with the status code, etc.

The Figure 7-23 shows a typical Swagger UI result.

Chapter 7 reSt apI wIth Django

292

Figure 7-23. Testing with Swagger UI

However, you would like the API to send the HTTP requests to perform

CRUD operations on the Ticket model used earlier. To validate the data

returned by the server in response to GET requests, as well as the data sent

to the server as a part of the request body as a part of the POST request,

you need to define a subclass of Schema class, as in Listing 7-16. The

Schema class in Django Ninja is inherited from the BaseModel class in the

Pydantic library.

Listing 7-16. Ninja Schema

from datetime import datetime

from ninja import Schema

class TicketSchema(Schema):

 flight_number : str

 passenger_name : str

Chapter 7 reSt apI wIth Django

293

 departure_time : datetime

 seat_number : str

The tickets/ endpoint invokes the tickets() view when requested with

the GET method. The server response is the list of Ticket instances cast as a

list of TicketSchema objects.

from typing import List

from .models import TicketSchema, Ticket

@api.get("/tickets", response=List[TicketSchema])

def tickets(request):

 return Ticket.objects.all()

The Swagger UI (refer Figure 7-24) shows that the tickets() view has

been mapped to the tickets/ URL.

Figure 7-24. TicketSchema in Swagger UI

Chapter 7 reSt apI wIth Django

294

You can test this endpoint to find its response body to be the list of

tickets with a 200OK as the status code, as displayed in Figure 7-25.

Figure 7-25. JSON response

Similarly, the create_ticket() view function handles the POST

request. The response argument to the api.post() decorator specifies that

the server response has to be a newly created Ticket instance.

@api.post("/tickets", response={201: TicketSchema})

def create_ticket(request, ticket: TicketSchema):

 Ticket.objects.create(**ticket.dict())

 return ticket

Chapter 7 reSt apI wIth Django

295

Figure 7-26 shows how it reflects in the Swagger UI documentation.

Figure 7-26. GET and POST endpoints in Swagger UI

Go ahead and test the POST endpoint (Figure 7-27). You need to

populate the request body as the data for a new Ticket object in JSON form.

Chapter 7 reSt apI wIth Django

296

Figure 7-27. Request body in Swagger UI

The Figure 7-28 shows that the Swagger UI generates 201 as the status

code with the newly added ticket in the response body.

Chapter 7 reSt apI wIth Django

297

Figure 7-28. Response showing the creation of new resource

You can easily expand the code to add the other API endpoint tickets/

pk to process the remaining HTTP methods – GET, PUT, and DELETE.

Thus, Django Ninja offers a simple and lightweight alternative to the

DRF-based API. It also supports Python’s async capabilities. So you can

also write async views in your API. Django Ninja also provides the features

such as authentication, pagination, and throttling. Since this section is

intended to provide just an overview of Django Ninja, the more advanced

features are not discussed here.

Chapter 7 reSt apI wIth Django

298

 Summary

This chapter covers an important aspect of modern web development –

the REST API. With the Django REST Framework as the API creation tool,

you learned how to add essential features such as authentication to your

API. You also had a brief introduction to Django Ninja – a new kid on

the block.

Next, we move on to another powerful API protocol – GraphQL –

and learn how to build Django apps that serve GraphQL queries with

Strawberry and Graphene.

Chapter 7 reSt apI wIth Django

299© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_8

CHAPTER 8

GraphQL with Django
For long, REST has been the go-to choice of developers for handling

efficient data exchange between the clients and the servers. However,

owing to the complex requirements of client-side applications that need

flexibility and efficiency in fetching the data, GraphQL has emerged as an

alternative API technology.

In this chapter, you are going to be introduced to the concepts of

GraphQL and how you can build powerful GraphQL-based API solutions

with the help of Django apps.

Some of the topics to be discussed in this chapter are

• GraphQL vs. REST

• GraphQL features

• GraphQL architecture

• Schema Definition Language

• GraphQL and Python

• Strawberry

• Strawberry-Django

• Graphene

• Graphene-Django

https://doi.org/10.1007/979-8-8688-1472-3_8#DOI

300

 GraphQL vs. REST

Ever since Roy Fielding proposed the concept in the year 2000, REST has

been the de facto standard for developing API solutions. However, over a

period, developers started finding certain limitations and shortcomings

in the concept of REST. In certain situations, REST proves to be rather

inefficient. One must first understand these limitations and then find out

how GraphQL tries to address them.

While REST is an architectural style that defines how the web services

should interact with each other, GraphQL is a query language for APIs with

which a client can specify what data it needs.

In the case of a REST API, when the client sends a request to an

endpoint, it fetches the data that is either more or less than it requires.

This over-fetching or under-fetching introduces inefficiency. The GraphQL

API, on the other hand, is capable of fetching the information exactly as

required.

As you have seen throughout, the REST application consists of

multiple endpoints and responds to different HTTP methods. In contrast,

the GraphQL API has only one endpoint for all types of operations on a

resource. REST relies on HTTP verbs (GET, POST, PUT, and DELETE) to

indicate the type of operation, whereas GraphQL requests use queries

for fetching data and mutations for creating new resources/modifying an

existing resource.

Having said that, REST and GraphQL APIs can be used

interchangeably. But as a thumb rule, GraphQL may be a better choice in

case of a limited bandwidth, as it minimizes the number of requests and

responses. It may also be helpful in situations where the client requests

vary significantly and you expect very different responses.

All in all, the differences between the two can be summarized as in

Table 8-1.

Chapter 8 GraphQL with DjanGo

301

Table 8-1. REST vs. GraphQL

REST GraphQL

reSt is a set of constraints that defines

structured data exchange between a

client and a server.

GraphQL is a query language, for apis

with which a client can specify what data

it needs.

reSt has multiple endpoints for various

operations on the resource.

GraphQL has a single UrL endpoint.

reSt returns data in a fixed structure

defined by the server.

Data returned by a GraphQL query in a

flexible structure defined by the client.

with reSt, the client must check if the

returned data is valid.

with GraphQL, invalid requests are

typically rejected by schema structure.

reSt is good for simple data sources

where resources are well defined.

GraphQL is good for large, complex, and

interrelated data sources.

Facebook (now Meta) started the development of GraphQL in 2012.

It has since been open-sourced and moved to GraphQL Foundation.

GraphQL is now being extensively used in many popular public APIs of

Facebook, GitHub, etc.

 GraphQL Architecture

GraphQL specifications describe how a GraphQL server functions. In

most of the use cases, a GraphQL server interacts with a connected

database. The clients (web or mobile clients) communicate with the

server through the GraphQL API. The server fetches the resources from

the database in response to the GraphQL queries. Sometimes the server

acts as a layer in front of multiple systems and integrates them with the

GraphQL API. GraphQL is transport-agnostic, meaning it can operate over

Chapter 8 GraphQL with DjanGo

302

various protocols (such as HTTP, WebSocket, gRPC, etc.) depending on

the application’s requirements. Figure 8-1 schematically represents the

architecture of the GraphQL system.

Figure 8-1. GraphQL architecture

 Schema Definition Language

In GraphQL, the structure of the API is written using the Schema

Definition Language (SDL). The GraphQL API itself comprises important

building blocks such as types, queries, mutations, subscriptions,

and schema.

 Types

Types are equivalent of data types in any programming language. The data

objects to be queried are described in the form of types. There are two data

types in GraphQL; scalar types are the primitive types, and object types are

the user-defined data types.

Chapter 8 GraphQL with DjanGo

303

Scalar types are the predefined primitive types.

Int: A signed 32-bit integer

Float: A signed double-precision floating-

point number

String: A sequence of UTF-8 encoded characters

Boolean: True or false

ID: A unique identifier

Object types are similar to Python classes, representing complex

objects with one or more fields of either scalar types or other object types.

Listing 8-1 is an example of an object defined in GraphQL.

Listing 8-1. GraphQL type

type Book {

 id: ID!

 title: String!

 author: String

 price: Int

}

Book is a GraphQL Object type, meaning it’s a type with some fields. To

indicate that a field is of Not-Null type, SDL needs it to be post-fixed by an

exclamation mark (!).

The GraphQL Schema defines what different operations can be

performed on the given Object type. The Query operation defines the

ready-only fetch operations, and the Mutation operation defines the write

and update operations.

Chapter 8 GraphQL with DjanGo

304

 Queries

Every GraphQL schema must support the query operation. The

composition of query lets the client decide exactly which fields are

expected to be retrieved from the server. This is precisely how a GraphQL

API avoids over-fetching and under-fetching issues faced with REST API.

A GraphQL query that fetches title and price of a Book type could be

written as shown in Listing 8-2.

Listing 8-2. GraphQL query

query {

 book {

 title

 price

 }

}

The query keyword indicates the retrieve operation, book being the

object type queried. The book query in the schema resolves to the Book

object. The inner pair of braces is the payload of the query, specifying the

fields to be fetched (title and price).

If the server had an instance of Book type (title="Numerical

Python", author="Johansan", and price=4000), the server response

might look like that shown in Listing 8-3.

Listing 8-3. Query result

{

 "data": {

 "book": {

 "title": "Numerical Python",

 author: "Johansan",

 "price": 4000

Chapter 8 GraphQL with DjanGo

305

 }

 }

}

A query can include arguments if you want specific objects to be

fetched. For example, to fetch the book with a given id (provided you have

defined the Book type with id as one of its fields), the query would be as

shown in Listing 8-4.

Listing 8-4. Query with arguments

 query {

 book(id: "1") {

 title

 price

 }

 }

In this case, the server would resolve the query for the book with id = 1.

 Mutations

Mutations are equivalent of the POST, PUT, and DELETE in the REST

API. It clearly means that mutations are used to create, modify, or delete

data on the server.

Mutation fields are one of the root operation types that provide an

entry point to the API. The mutation keyword is used to define operations

for creating, modifying, as well as deleting the data.

Taking the example of Book type further, a mutation type to add a new

book is defined as that shown in Listing 8-5.

Chapter 8 GraphQL with DjanGo

306

Listing 8-5. GraphQL mutation

mutation {

 createBook(title: "Numerical Python", author="Johansan",

price: 750) {

 title

 author

 price

 }

}

You can similarly define mutation types for updating and

deleting a book.

 Subscriptions

Subscription allows a GraphQL server to push notifications of real-time

updates to the clients that subscribe to a specified event. Subscription is a

way to establish a long-lived connection between the client and the server.

Unlike in the case of the REST, where the client polls the server at intervals,

the server pushes updates to the client when specific events occur.

An example of GraphQL Subscription type is shown in Listing 8-6.

Listing 8-6. GraphQL subscription

subscription {

 newBookAdded {

 title

 author

 price

 }

}

Chapter 8 GraphQL with DjanGo

307

 Schema

A GraphQL schema is the blueprint that defines the structure, types, and

capabilities of a GraphQL API. The three root types – queries, mutations,

and subscriptions – are part of the schema definition. These root types act

as entry points for interacting with the GraphQL API.

The query type defines the structure for read operations in the API,

mutation defines the structure for write operations, while the subscription

type defines the structure for real-time updates.

For the Book type example, the GraphQL schema can be expressed as

shown in Listing 8-7.

Listing 8-7. GraphQL schema

type Query {

 books: [Book]

 book(id: ID!): Book

}

type Mutation {

 addBook(title: String!, author: String, price: Int): Book

}

type Subscription {

 bookAdded: Book

}

schema {

 query: Query

 mutation: Mutation

 subscription: Subscription

}

Chapter 8 GraphQL with DjanGo

308

 GraphQL and Python

It is possible to construct a GraphQL API service in any language, and the

core components of SDL (Schema Definition Language) can be built with

many different approaches.

Python, because of its clean syntax and ease of use, is found to be

extremely suitable. Python ecosystem has many excellent libraries like

Graphene, Strawberry, and Ariadne for implementing GraphQL APIs and

can be seamlessly integrated with the Django framework.

In this chapter, you’ll explore how to use Strawberry and Graphene

libraries, especially their Django-specific apps Strawberry-Django and

Graphene-Django.

Graphene is a framework-agnostic Python library. It allows you to

define your schema and integrate queries, mutations, and subscriptions.

Graphene-Django is a popular Django reusable app, providing easy

integration with Django ORM models. It has adequate tools for connecting

Django’s authentication and permissions to GraphQL resolvers.

In comparison, Strawberry is a more recent library with which you can

leverage features of modern Python, such as type hints and async support.

Strawberry-Django is built on top of Strawberry.

Both these libraries take different approach toward GraphQL

implementation. Each one has its own design philosophy and features.

As far as the definition of GraphQL schema is concerned, in Graphene,

a schema is defined using Python classes. Strawberry, on the other hand,

makes use of Python’s @dataclass decorator for defining types. This lets

you leverage the feature of type hints, making it more intuitive.

Graphene has its own field types (graphene.String, graphene.Int,

etc.), while Strawberry uses Python’s native type hints for field definitions,

making it more natural and readable. This, as a result, enhances the type

safety and integrates well with Python’s type-checking tools.

Chapter 8 GraphQL with DjanGo

309

Graphene has been around for a while. The graphene-django package

is a popular choice among developers to integrate GraphQL in a Django

app. Strawberry is comparatively recent, but making rapid strides in

the popularity charts owing to its ability to support powerful features

of modern Python such as dataclass, type hints, and asynchronous

processing.

Programming languages and their libraries adapt either a code-first

approach or a schema-first approach for defining the GraphQL schema. In

the code-first approach, the schema is defined programmatically in classes

or functions representing types, queries, mutations, and resolvers. The

schema is automatically generated from the code. On the other hand, the

schema is written using the GraphQL Schema Definition Language (SDL).

The resolvers are implemented in the corresponding language, followed by

connecting the schema and the resolvers. Strawberry uses the code-first

approach, whereas a hybrid approach is adopted by Graphene.

 Strawberry

As mentioned earlier, Strawberry is a library for GraphQL API

development, based on modern Python (Python 3.8 onward). It supports

all the latest features of Python including type hints, async support,

dataclasses, generics, etc. These features help you in building high-

performance, nonblocking GraphQL APIs.

Naturally, one has to start by getting Strawberry installed in the current

working environment. Use PIP installer to install strawberry-graphql

package from PyPI repository. One of the unique features of Strawberry is

that it also provides a development server (similar to Django development

server) to test the GraphQL API in an interactive playground. So install

Strawberry along with the development server with the following command:

pip install "strawberry-graphql[debug-server]"

Chapter 8 GraphQL with DjanGo

310

It has also been mentioned earlier that Strawberry uses the code-first

approach for defining GraphQL schema. The @strawberry.type decorator

is the cornerstone of Strawberry’s code-first approach. Put this decorator

on top of a Python class and it will be transformed into a GraphQL

object type.

You can, therefore, define a Book type with the code in Listing 8-8.

Listing 8-8. Strawberry type

import strawberry

@strawberry.type

class Book:

 title: str

 author: str

 price: int

Strawberry coverts the Book class into the corresponding GraphQL

object type with fields: title, author, and price.

The type annotation feature of Python lets you indicate the expected

data type when you define an attribute. The Python types (str and int) are

mapped to their corresponding GraphQL types (String and Int).

The generated GraphQL schema would be

type Book {

 title: String!

 author: String!

 price: Int!

}

The Query type is similarly defined by decorating the Query class

with the @strawberry.type decorator. To fetch a Book object, you need

to define a resolver function. It must be decorated by the @strawberry.

field decorator, as in Listing 8-9.

Chapter 8 GraphQL with DjanGo

311

Listing 8-9. Strawberry Query

@strawberry.type

class Query:

 @strawberry.field

 def book(self) -> Book:

 return Book(title="Numerical Python",

author="Johansan", price = 750)

The schema object is obtained by calling the strawberry.Schema()

constructor and passing the Query type to it as an argument.

schema = strawberry.Schema(query=Query)

Strawberry package comes with an embedded development server

with which you can test and debug your API in the GraphQL playground.

Put the above code for Book type and Query type in a Python script

(Listing 8-10) app.py.

Listing 8-10. app.py (Strawberry schema)

import strawberry

@strawberry.type

class Book:

 title: str

 author: str

 price: int

@strawberry.type

class Query:

 @strawberry.field

 def book(self) -> Book:

 return Book(title="Numerical Python",

author="Johansan", price: 750)

schema = strawberry.Schema(query=Query)

Chapter 8 GraphQL with DjanGo

312

Start the Strawberry server with the following command:

>strawberry server app

Running strawberry on http://0.0.0.0:8000/graphql

Open your browser and point it to the URL http://localhost:8000/

graphql to start GraphiQL – a browser-based user interface with which you

can interactively execute queries against a GraphQL API.

Display the explorer bar of the interface, and add a new Query by the

name NewQuery. Select the required fields to be fetched. (Select all the

fields for now.) It will generate the following GraphQL query code:

query NewQuery {

 book {

 author

 price

 title

 }

}

Click the button to run the query. The result will be displayed in the

output pane on the right (as in Figure 8-2).

Figure 8-2. GraphiQL interface

Chapter 8 GraphQL with DjanGo

313

Let us add a mutation type to the API, as in Listing 8-11. Strawberry

provides the @strawberry.mutation decorator to be put on top of the

function inside the Mutation class.

Listing 8-11. app.py (Strawberry mutation)

@strawberry.type

class Mutation:

 @strawberry.mutation

 def add_book(self, title: str, author: str, price: int)

-> Book:

 print(f"Adding new book: {title}")

 return Book(title=title, author=author, price=price)

Start the server again and run the GraphQL mutation in the GraphiQL

interface.

mutation NewMutaton {

 addBook(author: "Johansan",

 price: 750,

 title: "Numerical Python")

 {

 author

 price

 title

 }

}

Update the declaration of the Schema object by including the mutation

argument in its constructor.

schema = strawberry.Schema(query=Query, mutation=Mutation)

Chapter 8 GraphQL with DjanGo

314

The browser displays the result as shown in Figure 8-3.

Figure 8-3. GraphiQL showing mutation

You can make the definition of query and mutation more flexible by

defining resolver functions with arguments and passing their values while

executing the schema. To define a variable, Strawberry requires it to be

prefixed by the $ symbol.

The NewMutation type (in Listing 8-12) accepts three variables: $title,

$author, and $price (first two of String! and the third of Int! type). The

addbook() resolver then uses them to initialize the fields.

Listing 8-12. Mutation with variables

mutation NewMutaton(

 $title:String!,$author:String!, $price: Int!

) {

 addBook(title: $title,

 author: $author,

 price: $price)

 {

Chapter 8 GraphQL with DjanGo

315

 author

 price

 title

 }

}

The values for these variables are assigned in the variables editor

section at the bottom of the GraphiQL interface.

{

 "title": "Numerical Python",

 "author": "Johansan",

 "price": 750

}

On running the schema, the output is displayed as shown in Figure 8-4.

Figure 8-4. GraphiQL interface with Variable editor

Chapter 8 GraphQL with DjanGo

316

A GraphQL schema can have more than one query and mutation –

especially for update and delete operations. The resolver functions

usually consist of business logic that adds, updates, or deletes records in a

connected database table.

Strawberry-Django is an ideal Django package to build a data-driven

GraphQL API. Strawberry has various ports for seamlessly integrating

with various other Python web frameworks such as Flask and FastAPI. In

the next section, you will explore how to add Strawberry to a Django

application.

 Strawberry-Django

The integration of GraphQL with Django is facilitated by the Python package

Strawberry-GraphQL-Django. This package makes it very easy to generate

GraphQL types, queries, mutations, and resolvers from the Django’s ORM.

Start by installing this package with the PIP utility.

pip install strawberry-graphql-django

As usual, start a new Django project and an app. Add the 'strawberry.

django' app along with your app in the INSTALLED_APPS list.

INSTALLED_APPS = [

 . . .,

 'strawberry.django',

 'myapi',

]

Strawberry-Django provides a built-in view called AsyncGraphQLView.

It is defined in the strawberry.django.views module and is specifically

designed to handle asynchronous GraphQL requests in Django

applications. A standard synchronous counterpart of this view –

GraphQLView – is also available in the same module.

Chapter 8 GraphQL with DjanGo

317

To serve the Schema object (as defined in the app.py script above),

you need to add AsyncGraphQLView in the URLCONF of your Django project.

Modify your project’s urls.py as per the code in Listing 8-13.

Listing 8-13. URLCONF with AsyncGraphQLView

from django.contrib import admin

from django.urls import path

from strawberry.django.views import AsyncGraphQLView

from myapi.app import schema

urlpatterns = [

 path('admin/', admin.site.urls),

 path('graphql', AsyncGraphQLView.as_view(schema=schema)),

]

Make sure that the app.py script is present in the myapi package folder.

If you start the Django development server, the URL http://localhost:8000/

graphql/ now serves the GraphQL API, and you can test the query and

mutation as done earlier.

The Strawberry-Django app brings much more functionality than

just the ability to serve the core Strawberry at the URL mapped to the

GraphQLView. The @strawberry_django.type decorator defined in this

package is extremely powerful. It extends the functionality of the core

Strawberry’s @strawberry.type decorator by integrating with Django

models, allowing automatic mapping of model fields to GraphQL fields

when you need to define GraphQL types based on Django models.

Let us use the same book model in for a new Django project that uses

the Strawberry-Django app to build a GraphQL API and add a functionality

to perform CRUD operations on the mapped SQLite database table.

Instead of @strawberry.type, use the @strawberry_django.type

decorator to map a BookType class to a GraphQL type. Pass the book model

as an argument.

Chapter 8 GraphQL with DjanGo

318

Listing 8-14 shows the code for models.py in the app.

Listing 8-14. models.py

from django.db import models

import strawberry_django

import strawberry

Create your models here.

class Book(models.Model):

 id = models.IntegerField(primary_key=True)

 title = models.CharField(max_length=50)

 author = models.CharField(max_length=50)

 price = models.IntegerField()

 publisher = models.CharField(max_length=50)

 class Meta:

 db_table = "books"

@strawberry_django.type(Book)

class BookType:

 id: strawberry.ID

 title: str

 author: str

 price: int

 publisher: str

In the earlier case, you had defined a query class (decorated by

@strawberry.type which you will now replace by @strawberry_django.

type) and defined a resolver function in it to return Book objects. In the

strawberry-Django package, the @strawberry_django.field decorator

automatically handles fetching data for the specified model fields. The

Django model fields are mapped directly to GraphQL fields. As such, you

don’t need to write resolvers for basic fetch operations.

Chapter 8 GraphQL with DjanGo

319

Listing 8-15 shows how a query is defined for the Django app

implementing a GraphQL API.

Listing 8-15. Query with strawberry_django.field()

import strawberry

@strawberry.type

class Query:

 all_books: list[BookType] = strawberry_django.field()

That’s it. The all_books field effectively acts as the resolver function

decorated by @strawberry.field in the core strawberry example. Obtain

the Schema object, using the above Query class as an argument.

schema = strawberry.Schema(query=Query)

Start the Django server, and enter the following code in the query

designer of the GraphiQL interface:

 query MyQuery{

 allBooks {

 id

 title

 author

 publisher

 price

 }

}

Chapter 8 GraphQL with DjanGo

320

The selected fields from all the records in the books table in your

database will be fetched, as shown in Figure 8-5.

Figure 8-5. Query fetching books from the database

You can also apply filter criteria on the retrieved data. You need to first

define input types by using the @strawberry.input decorator (refer

Listing 8-16) and use it as the filter criteria in the query field.

Listing 8-16. Filtered query

@strawberry.input

class BookFilterInput:

 id: strawberry.ID

@strawberry.type

class Query:

 all_books: list[BookType] = strawberry_django.field()

 book_by_id: BookType | None = strawberry_django.field

(filters=BookFilterInput)

The above query type defines two query fields: one to retrieve all books

and the other a book with the given id. To test this filtered query, enter the

following in the query designer. Check the query code and the output in

Figure 8-6.

Chapter 8 GraphQL with DjanGo

321

Figure 8-6. Result of the filtered query

You can make it dynamic by using Strawberry variables in the query

and inserting the values from the variables section at the bottom.

Adding mutation to the schema is similar. Just like the Query type,

define a Mutation class decorated by the @strawberry.type decorator.

Inside the class, define a createBook() function, which is again decorated

by @strawberry_django.mutation. Pass the values of the model fields as

the arguments, and call the create() method of the Django ORM API.

The Listing 8-17 defines the Mutation class.

Listing 8-17. Mutation to add book

@strawberry.type

class Mutation:

 @strawberry_django.mutation

 def create_book(self, title: str, author: str, price: int,

publisher: str) -> BookType:

 return Book.objects.create(title=title, author=author,

price=price, publisher=publisher)

In the GraphiQL interface, form a createBook mutation and pass

values. The output pane shows (in Figure 8-7) the JSON version of the

new book.

Chapter 8 GraphQL with DjanGo

322

Figure 8-7. GraphIQL output of createBook mutation

To confirm, go back to the SQLite viewer; a new book will have been

added. You can also add an update_book() function with relevant code for

updating the data of a book record of a specified id and delete_book() to

delete a book from the database.

 Graphene

Graphene is another popular Python library for GraphQL implementation.

It is a little opinionated as compared to Strawberry, in the sense that

it adapts a schema-first approach rather than Strawberry’s type-first

approach. Also, Graphene doesn’t fully support modern features such as

type hints, dataclasses, async, etc. Having said that, Graphene is a mature

and robust package. It can be easily integrated with Python’s Django

framework and Relay, a React-based client library for GraphQL.

Before you start exploring the features of Graphene, you need to install

it in the current Python environment.

pip install graphene

Chapter 8 GraphQL with DjanGo

323

Graphene’s type system is a little different from that of Strawberry.

Graphene has its own built-in scalar types that map to the corresponding

GraphQL scalar types.

graphene.String corresponds to String type in GraphQL.

graphene.Int maps with GraphQL’s Int type.

graphene.Float is equivalent to Float in GraphQL.

graphene.Boolean indicates Boolean type in GraphQL.

graphene.ID is used to represent ID type in GraphQL.

graphene.List is also a scalar type. It is a collection of objects of

other scalar types or even other object types, for example, graphene.

List(Book), where Book is a Graphene object type.

A Graphene ObjectType defines the relationship between the fields in

your Schema. It acts as the building block of the GraphQL API.

To define an object type, you need to have a Python class with

its attributes of any of the above scalar types and extend Graphene’s

ObjectType class. Each attribute represents a Field.

Listing 8-18 defines a Graphene object type named Book.

Listing 8-18. Graphene ObjectType

import graphene

class Book(graphene.ObjectType):

 title = graphene.String()

 author = graphene.String()

 price = graphene.Int()

 publisher = graphene.String()

Chapter 8 GraphQL with DjanGo

324

Let us use an in-memory database of books in the form of a Python list

for testing the API.

books = [

 {"title": "Beginning Django", "author": "Rubio",

"price":3053, "publisher":"Apress"},

 {"title": "Pro Django", "author": "Alchin", "price":4284,

"publisher":"Apress"},

]

A Query type is also a Python class that extends ObjectType. Each field

in the query type should have a corresponding resolver method to fetch

data. This resolver method should match the field name. When a client

queries a field, Graphene looks for the corresponding resolver method and

returns the value.

Here is the Query class (Listing 8-19) with a field all_books, which is a

list of all the objects of book type.

Listing 8-19. Graphene query

class Query(graphene.ObjectType):

 all_books = graphene.List(Book)

Inside this class, you need to define a resolver method – resolve_all_

books(). The two mandatory arguments each resolver method should

have are

root: The parent object, useful for resolving fields of

nested types

info: An info object that contains context about

the execution state, including the request, user,

and schema

Chapter 8 GraphQL with DjanGo

325

Additionally, you can have a resolver with a variable number of

arguments (**kwargs).

Accordingly, a resolve_all_books() resolver should be defined inside

the Query class, as in Listing 8-20. It returns the books list.

Listing 8-20. Graphene resolver function

 # Resolver to fetch all books

 def resolve_all_books(root, info) -> List[Book]:

 return books

As in the case of Strawberry code, get a Schema object, this time

by passing the Query type as the argument to the graphene.Schema()

constructor:

schema = graphene.Schema(query=Query)

Unlike Strawberry, Graphene doesn’t come bundled with its own

development server. So to test the query, you will have to create a /graphql

endpoint for a Python web app based on Flask or Django and serve the

schema on that endpoint. While you will be accessing the Graphene

schema with the Django server in the next session, for now, let us use the

schema.execute() function.

The execute() function needs one mandatory string argument

that represents a query (or mutation or subscription). It returns the

ExecutionResult containing any data and errors for the operation.

The query to be executed may be constructed as

query_string = '''

 query {

 allBooks {

 title

 author

Chapter 8 GraphQL with DjanGo

326

 price

 publisher

 }

 }

'''

Pass this query_string to the execute() function:

result = schema.execute(query_string)

Here is the result, based on the books list defined earlier:

{

 "allBooks":[

 {

 "title":"Beginning Django",

 "author":"Rubio",

 "price":3053,

 "publisher":"Apress"

 },

 {

 "title":"Pro Django",

 "author":"Alchin",

 "price":4284,

 "publisher":"Apress"

 }

]

}

Let us add one more field to the query, to fetch books by a specific

author as

books_by_author = graphene.List(Book, author=graphene.

String(required=True))

Chapter 8 GraphQL with DjanGo

327

The corresponding resolver function returns the corresponding book

object with matching value for the author field.

 # Resolver to fetch books by a specific author

 def resolve_books_by_author(root, info, author: str) ->

List[Book]:

 return [Book(**book) for book in books if

book["author"] == author]

The required string to test this query is

query_string = '''

 query {

 booksByAuthor(author: "Alchin") {

 title

 author

 }

 }

'''

result = schema.execute(query_string)

You should get the result as

{

 "booksByAuthor":[

 {

 "title":"Pro Django",

 "author":"Alchin"

 }

]

}

Chapter 8 GraphQL with DjanGo

328

Let us now add mutations in the schema. In Graphene, a mutation type

is a class that extends graphene.Mutation. The CreateBook mutation (as

in Listing 8-21) adds a new book in the books list. Inside this class, include

an inner Arguments class with its attributes needed for resolving the Book

type fields. The mutate() method is a resolver, invoked once the mutation

is called. It takes the same arguments as the query Resolver. In this case,

the mutate() method adds a new book to the list.

Listing 8-21. Graphene mutation

class CreateBook(graphene.Mutation):

 class Arguments:

 title = graphene.String(required=True)

 author = graphene.String(required=True)

 price = graphene.Int(required=True)

 publisher = graphene.String(required=True)

 book = graphene.Field(Book)

 def mutate(self, root, info, title: str, author:str,

price:int, publisher:str) -> "CreateBook":

 new_book = {"title": title, "author": author,

"price":price, "publisher":publisher}

 books.append(new_book)

 return CreateBook(book=Book(**new_book))

An object type Mutation with create_book as a field whose value is

obtained with the Field() attribute of the CreateBook mutation.

class Mutation(graphene.ObjectType):

 create_book = CreateBook.Field()

Update the schema by adding the mutation parameter.

schema = graphene.Schema(query=Query, mutation=Mutation)

Chapter 8 GraphQL with DjanGo

329

As before, the schema.execute() returns the result of this mutation

when the appropriate query string is passed, like the one in Listing 8-22.

Listing 8-22. Mutation string

mutation_string = '''

 mutation {

 createBook(title: "Numerical Python", author:

"Johansan", price: 4000, publisher:"Springer") {

 book {

 title

 author

 price

 publisher

 }

 }

 }

'''

result = schema.execute(mutation_string)

You can expect a result to be

{

 "createBook":{

 "book":{

 "title":"Numerical Python",

 "author":"Johansan",

 "price":4000,

 "publisher":"Springer"

 }

 }

}

Chapter 8 GraphQL with DjanGo

330

Following the similar approach, you may define the mutations for

updating and deleting a book (CreateBook and DeleteBook classes

extending graphene.Mutation) and add them as fields in the Mutation

type. You may refer to the code for this part available on the code

repository of this book.

In this exercise, a Python list of books has been used as an in-memory

database. In reality, a more persistent database such as a SQLite database

will be used. Graphene-Django integrates Graphene with Django, which

helps to build robust Django-based data-driven GraphQL APIs.

 Graphene-Django

Graphene has been integrated with different Python frameworks including

Django (others being Flask, FastAPI, etc.). Its additional abstractions are

extremely useful for building a Django app that implements the GraphQL

protocol.

Start building a Django-based GraphQL API by installing Graphene-

Django package.

pip install graphene-django

As you would expect, you have to add 'graphene_django' along with

the django app ('myapi') to the INSTALLED_APPS setting of the Django

project.

INSTALLED_APPS = [

 . . .,

 'graphene_django',

 'myapi',

]

Chapter 8 GraphQL with DjanGo

331

There is one more configuration to be made to the project’s setting.

You have to specify the location of your schema.

GRAPHENE = {

 'SCHEMA': 'myapi.schema.schema'

}

This SCHEMA key lets Django know where to find the root schema

object (Schema) for your GraphQL API. Note that such setting is not

necessary in Strawberry-Django. From the above, it is clear that the

schema.py script in the myapi app package folder will have the declaration

of schema object.

Since we intend to build the GraphQL API around a database, there

should be a model defined in the Django application. The by now familiar

Book model will be used in this discussion.

Like you did in the case of the strawberry-django example, you

have to define an object type. Instead of the graphene.ObjectType, the

GraphQL type will be obtained by extending the graphene_django.

DjangoObjectType class.

The DjangoObjectType class makes it easy to expose Django models in

your GraphQL API. As such, the type fields will be directly picked from the

attributes of the Django model. Enter the script shown in Listing 8-23 in

the schema.py file (in the myapi folder).

Listing 8-23. DjangoObjectType

from graphene_django import DjangoObjectType

from .models import Book

Define a GraphQL type for the Book model

class BookType(DjangoObjectType):

 class Meta:

 model = Book

 fields = ("id", "title", "author", "publisher", "price")

Chapter 8 GraphQL with DjanGo

332

Defining the queries is more or less similar to what was done in the

core Graphene example, except the resolver resolve_all_books() calls

the objects.all() method on the model to return a list of books in the

table (Listing 8-24). Similarly, the resolve_book() resolver retrieves a

book of the specified primary key.

Listing 8-24. Query for graphene_django

class Query(graphene.ObjectType):

 all_books = graphene.List(BookType)

 book = graphene.Field(BookType, id=graphene.Int())

 def resolve_all_books(self, info):

 return Book.objects.all()

 def resolve_book(self, info, id):

 try:

 return Book.objects.get(pk=id)

 except Book.DoesNotExist:

 return None

All you have to do now is to define an endpoint /graphql in the

URLCONF of the Django project so that it presents the GraphiQL interface

in the browser. Just as strawberry-django, the graphene-django app also

provides an inbuilt view called GraphQLView and maps it with the /graphql

endpoint inside the urls.py module (refer Listing 8-25).

Listing 8-25. URLCONF for graphene_django

from django.contrib import admin

from django.urls import path

from graphene_django.views import GraphQLView

Chapter 8 GraphQL with DjanGo

333

urlpatterns = [

 path('admin/', admin.site.urls),

 path('graphql/', GraphQLView.as_view(graphiql=True)),

Enable GraphiQL interface

]

You are now ready to test the GraphQL queries that fetch the list of

books and retrieve a single book. Fire the Django development server and

visit the graphql endpoint.

To add a mutation to this API, follow the same logic implemented

in the core Graphene example. Define the CreateBook class, and extend

graphene.Mutation.

Inside the inner Arguments class, define the same attributes as in the

Book model.

Define the mutate() method which takes values to match with the

arguments, and uses them in the create() method of the Django model

to actually add a new Book object in the corresponding books table in the

database.

Define a Mutation type with create_book as a field, as in Listing 8-26.

Listing 8-26. Mutation for graphene_django

Define Mutations

class CreateBook(graphene.Mutation):

 class Arguments:

 title = graphene.String(required=True)

 author = graphene.String(required=True)

 publisher = graphene.String(required=True)

 price = graphene.Int(required=True)

 book = graphene.Field(BookType)

Chapter 8 GraphQL with DjanGo

334

 def mutate(self, info, title, author, publisher, price):

 book = Book.objects.create(

 title=title,

 author=author,

 publisher=publisher,

 price=price

)

 return CreateBook(book=book)

class Mutation(graphene.ObjectType):

 create_book = CreateBook.Field()

Make sure you update the Schema object by adding the mutation

parameter.

schema = graphene.Schema(query=Query, mutation=Mutation)

You are now ready to test the mutation as well. As an exercise, add the

update as well as delete mutations to the schema. You can refer to the code

available in the repository of this book in case of any doubt.

 Summary

This chapter has been a journey of exploring the world of GraphQL and

its implementation in Python and Django. You learned how the GraphQL

protocol is implemented with two widely popular Python libraries,

Strawberry and Graphene, and their Django extensions. Subscriptions

and other features such as authorization have not been discussed here.

Interested readers are encouraged to explore the official documentation

and other resources to learn about these aspects.

Chapter 8 GraphQL with DjanGo

335© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_9

CHAPTER 9

WebSockets
with Django
One of the major limitations of the HTTP protocol is that it is a strictly

unidirectional protocol, in the sense that the client has to first send a

request in response to which any data is sent from the server. Also, the

fact that HTTP is a stateless protocol necessitates the connection to be

re-established for each subsequent request. The WebSocket protocol

overcomes these limitations and enables a simultaneous two-way

communication channel over a single Transmission Control Protocol

(TCP) connection. In this chapter, you will be introduced to handling the

WebSocket protocol in Python in general and Django in particular with the

help of its Channels app.

This chapter covers the following topics:

• WebSocket protocol

• WebSocket in Python

• Django Channels

• Consumers

• Routing

https://doi.org/10.1007/979-8-8688-1472-3_9#DOI

336

• Channel layers

• WebSocket client template

• Login/logout

 WebSocket Protocol

The term “WebSocket” was first used by Ian Hickson and Michael Carter

in 2008. WebSocket uses HTTP as the initial transport mechanism,

but because the TCP connection is kept alive after the HTTP response

is received, WebSocket makes it possible to send message-based

data, similar to UDP, at the same time ensuring the reliability of

TCP. Figure 9-1 illustrates how the Websocket protocol works.

Figure 9-1. WebSocket protocol

The WebSocket URIs use a new scheme ws:// (or wss:// for a secure

WebSocket). A WebSocket communication actually starts on an HTTP

connection. If the client wants to upgrade the normal HTTP connection,

it should include a connection header to upgrade, the Upgrade header

itself set to WebSocket to indicate its intent to establish a WebSocket

connection. The Sec-WebSocket-Key header is a base-64 encoded 16-

bit value.

Chapter 9 WebSoCketS With Django

337

A typical GET request from an HTTP client to a ws:// URI might look

like this:

GET ws://example.com:8765/ HTTP/1.1

Host: localhost: 8765

Connection: Upgrade

Pragma: no-cache

Cache-Control: no-cache

Upgrade: websocket

Sec-WebSocket-Version: 13

Sec-WebSocket-Key: q4xkcO32u266gldTuKaSOw==

If and when the server accepts this handshake extended by the client,

its response code is HTTP 101 Switching Protocols, implying that the

server is switching to the WebSocket protocol as requested by the client.

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: fA9dggdnMPU79lJgAE3W4TRnyDM=

This provides a two-way full-duplex communication channel between

the two that doesn’t get disconnected after every transaction and is

suitable for real-time applications. One of the major departures from

HTTP is that either the client or the server can choose to send a message at

any time.

Any server-side application written in a programming language (such

as Python) that is capable of Berkeley sockets can act as a WebSocket

server. The server waits for incoming socket connections using a standard

TCP socket.

Note that the client still has to start the WebSocket handshake process

by contacting the server and requesting a WebSocket connection.

To initiate WebSocket communication, you need to create a

WebSocket object.

Chapter 9 WebSoCketS With Django

338

Listing 9-1. WebSocket object

const ws = new WebSocket('ws://localhost:8765');

This sends a handshake request to the server. Once accepted, the

readyState property of the WebSocket object will become OPEN, and the

connection is ready to transfer data. You can now begin transmitting data

to the server.

To do this, call the WebSocket object’s send() method once

a connection is established by defining an onopen event handler,

as in Listing 9-2.

Listing 9-2. Sending message

ws.onopen = (event) => {

 ws.send("some message");

};

When the client receives messages, a onmessage event handler is sent

to the WebSocket object to begin listening for incoming data (Listing 9-3).

Listing 9-3. Receiving message

ws.onmessage = (event) => {

 console.log(event.data);

};

 WebSocket and Python

While you can use JavaScript inside a web page that works as a WebSocket

client, you need to write the server in a language that supports BSD

sockets. A Python library called websockets helps in building a WebSocket

server as client application. It provides a coroutine-based API; hence, it

allows the WebSocket server to handle multiple clients asynchronously.

Chapter 9 WebSoCketS With Django

339

The websockets library depends on asyncio and requires Python

version 3.9 or newer. Use PIP to install it in the current environment.

pip install websockets

The serve() method of the server class in the websockets.asyncio

module starts the WebSocket server (refer Listing 9-4). It needs a handler

coroutine, the host, and a port number on which it starts listening to the

incoming requests.

Listing 9-4. Starting the WebSocket server

from websockets.asyncio import server

server.serve(handler, host, port)

Whenever a new client sends a connection request, the server creates a

WebSocket connection object, which is passed to the handler.

To keep the server in an event loop that runs forever, use the create_

future() function (Listing 9-5).

Listing 9-5. WebSocket server loop

async with serve(handler, "localhost", 8765):

 await asyncio.get_running_loop().create_future()

The websocket object (actually it is an instance of

WebSocketServerProtocol) is passed to the asynchronous handler

coroutine. The send() and recv() methods let you to send and receive

messages to and from the WebSocket client.

To handle continuous communication between the server and the

client, an async for loop is used.

async for message in websocket:

The receive and send actions are often enclosed inside a try – except

block. Listing 9-6 shows the code for the handler coroutine.

Chapter 9 WebSoCketS With Django

340

Listing 9-6. WebSocket Handler

async def handler(websocket):

 try:

 async for message in websocket:

 print(f"Received: {message}")

 msg=input("enter server message: ")

 await websocket.send(f"Server says: {msg}")

 except Exception as e:

 print(f"Connection closed: {e}")

Listing 9-7 shows the complete code for setting up a WebSocket server

capable of receiving messages from a client and sending back its own

message.

Listing 9-7. WebSocket server code

import asyncio

from websockets.asyncio.server import serve

async def wshandler(websocket):

 print("Client connected")

 try:

 async for message in websocket:

 print(f"Received: {message}")

 msg=input("enter server message: ")

 await websocket.send(f"Server says: {msg}")

 except Exception as e:

 print(f"Connection closed: {e}")

async def main():

 async with serve(wshandler, "localhost", 8765):

 await asyncio.get_running_loop().create_future()

Run forever

Chapter 9 WebSoCketS With Django

341

if __name__ == "__main__":

 asyncio.run(main())

Python’s WebSocket client calls the connect() method of the client

class defined in the websockets.asyncio module. To enable the client

to send and receive messages in a loop, you can use a while loop (as in

Listing 9-8) within the async with block of the WebSocket client.

Listing 9-8. WebSocket client code

import asyncio

from websockets.asyncio.client import connect

async def client_logic():

 uri = "ws://localhost:8765"

 async with connect(uri) as websocket:

 print("Connected to the server. Type 'exit' to quit.")

 while True:

 # Get user input

 message = input("Enter a message: ")

 # Exit condition

 if message.lower() == "exit":

 print("Closing connection.")

 break

 # Send message to the server

 await websocket.send(message)

 print(f"Sent: {message}")

 # Wait for response from the server

 response = await websocket.recv()

 print(f"Received: {response}")

Chapter 9 WebSoCketS With Django

342

if __name__ == "__main__":

 asyncio.run(client_logic())

To test the interaction, run the server and client codes in two separate

terminals (start the server first). As the client’s request is accepted, the

two-way communication begins.

Server terminal:

python ws_server.py

Client connected

Received: Hello Server

enter server message: Hi client

Client terminal:

python ws_client.py

Connected to the server. Type 'exit' to quit.

Enter a message: Hello Server

Sent: Hello Server

Received: Server says: Hi client

To establish WebSocket connection from a browser, you can open a

web page in which a JavaScript function logs messages from the server in

response to the onmessage event and sends the contents of a text field as a

message when an HTML button is clicked.

Save the HTML script shown in Listing 9-9 as ws_client.html.

Listing 9-9. ws_client.html

<body>

 <h1>WebSocket Client</h1>

 <input type="text" id="messageInput" placeholder="Type your

message here">

 <button id="sendMessage">Send Message</button>

 <div id="messages"></div>

Chapter 9 WebSoCketS With Django

343

 <script>

 const ws = new WebSocket('ws://localhost:8765');

 // Log when the connection is open

 ws.onopen = () => {

 console.log('Connected to WebSocket server');

 };

 // Log messages from the server

 ws.onmessage = (event) => {

 const messageDiv = document.getElementById

('messages');

 const newMessage = document.createElement('p');

 newMessage.textContent = `${event.data}`;

 messageDiv.appendChild(newMessage);

 };

 // Send a message when the button is clicked

 document.getElementById('sendMessage').

addEventListener('click', () => {

 const messageInput = document.getElementById

('messageInput');

 const message = messageInput.value.trim();

// Get the input value

 if (message) {

 if (ws.readyState === WebSocket.OPEN) {

 console.log(`Sending: ${message}`);

 ws.send(message); // Send the message to

the server

 messageInput.value = ''; // Clear the

input field

Chapter 9 WebSoCketS With Django

344

 } else {

 console.log('WebSocket is not open.');

 }

 } else {

 console.log('Please enter a message before

sending.');

 }

 });

 </script>

</body>

When opened in the browser (Figure 9-2 shows the screenshot), the

connection is established, and you can start sending and receiving messages.

Figure 9-2. WebSocket client

 Django Channels

To integrate the WebSocket server with a Django application, it is

recommended that you use the Channels app. Channels is a reusable

Django app that adds an asynchronous layer to your Django application so

Chapter 9 WebSoCketS With Django

345

that it can implement the WebSocket protocol. By default, Django follows

a request-response model. Including the Channels app extends Django

for long-lived communications facilitating real-time applications like live

notifications or chats.

To install the Channels app in your Python and Django environment,

use the PIP utility. You can install Daphne as well if you haven’t done so

earlier.

pip install -U 'channels[daphne]'

Once installed, add Channels and Daphne to the list of installed apps

in the project’s settings. To avoid any conflicts, add them to the top of the

installed apps list. Assuming that you already have a Django project in

place and an app chatApp in it, update the settings.py file as

INSTALLED_APPS = [

 'daphne',

 'channels',

 . . . ,

 'chatApp',

]

As you know, Django is bundled with a WSGI-compliant development

server. However, here you want to use Daphne to server your app

asynchronously. When a project is set up (with the startproject

command), Django creates a wsgi.py script (Listing 9-10), which provides

the application object.

Listing 9-10. wsgi.py

import os

from django.core.wsgi import get_wsgi_application

os.environ.setdefault('DJANGO_SETTINGS_MODULE',

'channelproject.settings')

application = get_wsgi_application()

Chapter 9 WebSoCketS With Django

346

To force Django to use the ASGI application, you need to integrate

Channels and Daphne with the Django project by creating the routing

configuration. It is similar to a Django URLCONF that tells Channels what

code to run when an HTTP request is received by a channel server.

Modify your project’s asgi.py file as in Listing 9-11.

Listing 9-11. asgi.py

import os

from django.core.asgi import get_asgi_application

from channels.routing import ProtocolTypeRouter

os.environ.setdefault('DJANGO_SETTINGS_MODULE',

'channelproject.settings')

application = ProtocolTypeRouter({

 'http': get_asgi_application()

})

ProtocolTypeRouter acts as the entry point for ASGI applications.

It routes incoming connections to appropriate handlers based on the

protocol type. For now, the http protocol is included. Later on, we shall

add the WebSocket protocol.

To let your Django project know, add ASGI_APPLICATION variable

in the settings and set it to the application object provided by the asgi.

py module.

ASGI_APPLICATION = 'channelproject.asgi.application'

If you start the server with the runserver command, you should

now find that channel’s development server has taken over our Django

development server.

python manage.py migrate

December 29, 2024 - 20:03:05

Django version 5.0.7, using settings 'channelproject.settings'

Chapter 9 WebSoCketS With Django

347

Starting ASGI/Daphne version 4.1.2 development server at

http://127.0.0.1:8000/

Quit the server with CTRL-BREAK.

To serve a WebSocket connection, you need to incorporate a few new

features in your Django project. You know that in a synchronous Django

app, any HTTP request is mapped to the corresponding view. However, in

the case of a WebSocket connection, Django looks for consumers rather

than views. The Channels app also needs routing rules to be defined for

individual protocol types. Channel layers is another useful feature of

Django Channels that allows you to broadcast messages to all consumers

simultaneously.

A Django app that serves WebSocket is a combination of traditional

Django views that are mapped to the URL routes and consumers controlled

by channel routers. Figure 9-3 illustrates the Django Channels architecture.

Figure 9-3. Channels architecture

Chapter 9 WebSoCketS With Django

348

 Consumers

Consumers are the channel’s version of Django views. A consumer defines

the logic for handling events such as connection establishment, message

receipt, and connection closure.

There are two types of consumers – a synchronous consumer handles

events in a blocking manner, whereas an asynchronous consumer handles

the events using Python’s asyncio. In your project, you can declare a

subclass of either AsyncConsumer or SyncConsumer both available in the

channels.consumer module.

A consumer class includes the following methods:

• connect() method is called when a WebSocket

connection is opened.

• disconnect() method is called when the connection

is closed.

• receive() handles incoming messages.

Similar to Django’s generic views, Channels package also consists

of generic consumers that wrap common functionality for HTTP and

WebSocket handling.

WebsocketConsumer wraps the ASGI message sending and

receiving into handling that just deals with text and binary frames.

AsyncWebsocketConsumer is same, just that its methods are coroutines.

Let us provide ChatConsumer as a consumer class in the Django

project. To start with, define the connect() method, as in Listing 9-12.

It accepts the incoming connection request and sends back a JSON data to

the client to let it know that the connection has been established.

Chapter 9 WebSoCketS With Django

349

Listing 9-12. Consumer class

import json

from channels.generic.websocket import WebsocketConsumer

class ChatConsumer(WebsocketConsumer):

 def connect(self):

 self.accept()

 self.send(text_data=json.dumps({

 'type': 'chat.message',

 'message': 'Connection established!'

 }))

 Routing

Routing in Channels is what URL routing is in the classical Django app.

It determines how different WebSocket connections are handled by

associating them with specific consumers. The routing classes in Channels

allow you to combine and stack your consumers to dispatch based on what

the connection is.

The channels.routing module contains utilities for routing protocols

to specific consumers. The main class provided by this module is

ProtocolTypeRouter. It allows you to define protocol-specific handling

within your ASGI application. Each protocol (e.g., http, WebSocket) can be

mapped to its respective handler.

Routing is provided by defining the websockets_urlpatterns list (note

the similarity of the urlpatterns list in the case of Django views) in the

routing.py file in the app folder.

Chapter 9 WebSoCketS With Django

350

Listing 9-13. WebSocket router

from django.urls import re_path

from chatApp.consumers import ChatConsumer

websocket_urlpatterns = [

re_path(r'ws/socket-server/', ChatConsumer.as_asgi()),

]

Note the use of re_path() function instead of path() in the

Listing 9-13. The re_path() function allows for more complex urlpatterns

using regular expressions. The ws/chat/ URL is mapped to the ASGI

callable object returned by the as_asgi() method. It has a similar purpose

to Django’s as_view().

The AuthMiddleware in Channels supports standard Django

authentication, where the user details are stored in the session. It allows

read-only access to a user object in the scope.

For convenience, these are also provided as a combined callable called

AuthMiddlewareStack that includes all three.

The channels.auth module provides authentication and session

handling for WebSocket connections. AuthMiddlewareStack is a

convenient middleware stack as a combined callable comprising

AuthMiddleware, SessionMiddleware, and CookieMiddleware. It

adds Django’s authentication and session middleware to WebSocket

connections. It allows WebSocket consumers to access the scope["user"]

attribute, enabling user authentication.

Go back to the asgi.py code and import the AuthMiddlewareStack

middleware, and update the list of protocols in the ASGI application object

(Listing 9-14).

Chapter 9 WebSoCketS With Django

351

Listing 9-14. Protocol router

import os

from django.core.asgi import get_asgi_application

from channels.routing import ProtocolTypeRouter, URLRouter

from channels.auth import AuthMiddlewareStack

from chatApp.routing import websocket_urlpatterns

os.environ.setdefault('DJANGO_SETTINGS_MODULE',

'channelproject.settings')

application = ProtocolTypeRouter({

 'http': get_asgi_application(),

 'websocket': AuthMiddlewareStack(

 URLRouter(

 websocket_urlpatterns

)

),

})

As mentioned earlier, the client first has to send an HTTP request and

subsequently establish the WebSocket connection. Hence, define a view

function (as in Listing 9-15) that serves an index template.

Listing 9-15. index view

from django.shortcuts import render

Create your views here.

def index(request):

 return render(request, 'channelApp/index.html')

As always, register this view with a URL route, as Listing 9-16 shows.

Chapter 9 WebSoCketS With Django

352

Listing 9-16. urls.py (chatApp)

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='index'),

]

Finally, refer the Listing 9-17 to update the URLCONF of the project.

Listing 9-17. URLCONF

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path('admin/', admin.site.urls),

 path('', include('channelApp.urls')),

]

Put a JavaScript code inside the index template (Listing 9-18), which

sends the connection request at the URL with the ws:// protocol.

Listing 9-18. index.html as WS client

<html>

<head>

 <title>Index Page</title>

 <h1>Let's chat</h1>

 <script>

 let url = 'ws://' + window.location.host + '/

ws/chat/';

 const chatSocket = new WebSocket(url);

Chapter 9 WebSoCketS With Django

353

 chatSocket.onmessage = function(e) {

 const data = JSON.parse(e.data);

 console.log("Data: ", data);

 };

 </script>

 </body>

</html>

Note that the onmessage event is sending the data passed by the

consumer’s connect() method to the browser’s JavaScript console.

Start the Django server (Channels and Daphne take over the

default development server). The index page opens at the URL http://

localhost:8000/. The JavaScript console in the developer tools of your

browser reveals that the WebSocket connection has been established.

Refer to the browser screenshot in the Figure 9-4.

Figure 9-4. JS console

Go ahead and add a simple chat interface to the index template. As in

the Listing 9-19, add an HTML form that has a <div> element to display the

log of chat messages exchanged and a text field for entering a message.

Chapter 9 WebSoCketS With Django

354

Listing 9-19. Client interface

<body onload="myFunction()">

 <p id="Log"></p>

 <h1>Let Us Chat!</h1>

 <form id="form">

 <input type="text" name="message"/>

 <p>Messages</p>

 <div id="messages" style="border: thin solid black">

 </div>

 </form>

 Channel Layers

The Django Channels app has a feature of Channel layers, which is

especially useful for making a distributed real-time application. It allows

you to talk between different instances of an application. Channel layers

allow the consumers to send and receive messages, and it makes it

possible to broadcast messages to multiple consumers in a group.

Note that if you are using any SyncConsumer, you should wrap the

Channel Layer functionality in async_to_sync adapter function.

Channel layers are configured by defining the CHANEL_LAYERS in the

project’s settings.py module. The default channel layer is obtained from a

project with channels.layers.get_channel_layer(), but if you are using

consumers, then self.channel_layer automatically provides a copy for

you on the consumer.

Chapter 9 WebSoCketS With Django

355

Django Channels provides two backends for Channel layers:

Redis Channel Layer: RedisChannelLayer is a

Django-maintained channel that uses Redis as

its backing store. A single-server and sharded

configurations are supported. This layer is

recommended for production use.

In-Memory Channel Layer: Channels also comes

packaged with an InMemoryChannelLayer. This

should be used in testing environment or for local-

development purpose.

To configure a Django project for Redis, use the following setting:

CHANNEL_LAYERS = {

 'default': {

 'BACKEND': 'channels_redis.core.RedisChannelLayer',

 'CONFIG': {

 'hosts': [('127.0.0.1', 6379)],

 },

 },

}

The setting may be modified as below for the in-memory layer:

CHANNEL_LAYERS = {

 'default':{

 'BACKEND':'channels.layers.InMemoryChannelLayer'

 }

}

As mentioned above, if your consumer class is derived from

AsyncConsumer, its send(), receive(), and other functions are async

coroutines, so you need to await them. However, if it is a SyncConsumer,

you will need to use the async_to_sync wrapper.

Chapter 9 WebSoCketS With Django

356

 Single Channel

When the channel layer is enabled, an open WebSocket in your application

has a single Consumer instance, and it has a unique channel name: self.

channel_name.

Listing 9-20. Single channel

from asgiref.sync import async_to_sync

from .models import Clients

class ChatConsumer(WebsocketConsumer):

 def connect(self):

 # Make a database row with our channel name

 Clients.objects.create(channel_name=self.channel_name)

To send to a single channel, just find its channel name (Listing 9-21)

and use channel_layer.send.

Listing 9-21. Sending message to a channel

from channels.layers import get_channel_layer

channel_layer = get_channel_layer()

async_to_sync (channel_layer.send("channel_name", {

 "type": "chat.message",

 "text": "Hello there!",

}))

 Groups

Instead of sending the messages to individual channels, you’ll ideally

want to broadcast them to multiple consumers simultaneously. For this

purpose, Channels provides the Groups. Groups is a broadcast system that

allows you to add and remove channel names from named groups and

send messages to those named groups.

Chapter 9 WebSoCketS With Django

357

The group_add() method is used to add a channel (or a consumer) to a

given group. In Listing 9-22, it is called from inside the connect() method

of the consumer.

Listing 9-22. Channel group

 def connect(self):

 self.room_group_name = 'test'

 async_to_sync(self.channel_layer.group_add)(

 self.room_group_name,

 self.channel_name

)

 self.accept()

If a user disconnects, it is removed from the group with the group_

discard() method.

 def disconnect(self, close_code):

 async_to_sync(self.channel_layer.group_discard)(self.

room_group_name, self.channel_name)

Whenever a new message is received in a consumer, it will call the

method group_send() method of the channel layer to which it belongs,

which will send the data, automatically to all the active members of the

group (refer to Listing 9-23).

Listing 9-23. Sending to group

 def receive(self, text_data):

 text_data_json = json.loads(text_data)

 message = text_data_json['message']

 async_to_sync(self.channel_layer.group_send)(

 self.room_group_name,

Chapter 9 WebSoCketS With Django

358

 {

 'type':'chat_message',

 'message':message

 }

)

Here, the value of the type attribute is chat_message method. It is the

method that internally calls the send() method to send data to each consumer.

Listing 9-24. Broadcast message

 def chat_message(self, event):

 message = event['message']

 self.send(text_data=json.dumps({

 'type':'chat',

 'message':message

 }))

 WebSocket Client Template

You have used a web page as the WebSocket client to interact with a stand-

alone WebSocket server built with the websockets library. Its JavaScript

code needs to modified to make it suitable for Django Channels and

especially for Channel layers.

As described earlier, a simple HTML form is added to enter the

messages and to display the chat log. In the JavaScript code (Listing 9-25),

add a function that pops up a prompt box to let the user enter a name.

Listing 9-25. WebSocket client – updated

<script type="text/javascript">

 var user="";

 function myFunction() {

Chapter 9 WebSoCketS With Django

359

 user = prompt("Enter User name", "User1");

 document.getElementById("Log").innerHTML =

 "<h2>Hello " + user +"</h2>";

}

The onmessage event handler, as in Listing 9-26 is fired when an

incoming message is notified. If it is from the group, the message text is

appended to the chat log (a div element with messages as the id).

Listing 9-26. Chat log

chatSocket.onmessage = function(e){

 let data = JSON.parse(e.data)

 console.log('Data:', data)

 if(data.type === 'chat'){

 let messages = document.getElementById

('messages')

 messages.insertAdjacentHTML('beforeend', `<div>

 <p>${data.message}</p>

 </div>`)

 }

}

On the other hand, the message entered by a user is pushed

into the group so that it can be broadcast to all the consumers.

The Listing 9-27 has the relevant JavaScript code.

Listing 9-27. Sending in group

let form = document.getElementById('form')

form.addEventListener('submit', (e)=> {

 e.preventDefault()

 let message = e.target.message.value

Chapter 9 WebSoCketS With Django

360

 chatSocket.send(JSON.stringify({

 'message':user+":"+message

 }))

 form.reset()

})

To test the WebSocket group chat, fire up the Daphne server as before,

and open two browser windows as in Figure 9-5, pointing to the URL of the

index page (http://localhost:8000/).

Try sending text from either window. The messages will appear in the

chat log on both the browsers.

Figure 9-5. Channels group chat

 Login/Logout

The channels.auth module includes login and logout functions, similar

to the login and logout functions in the contrib.auth package in Django.

Within your consumer, use login() to log a user in:

login(scope, user, backend=None)

Chapter 9 WebSoCketS With Django

361

This requires that your scope has a session object; it can be

done by wrapping the consumer in a AuthMiddlewareStack.

The Listing 9-28 shows how this logic works.

Listing 9-28. Channels login (async)

from channels.auth import login

class ChatConsumer(AsyncWebsocketConsumer):

 ...

 async def receive(self, text_data):

 ...

 await login(self.scope, user)

 await database_sync_to_async(self.scope

["session"].save)()

Note that the session is populated but will not be saved automatically

– you must call the scope["session"].save() method.

When calling from a synchronous consumer, you will need to use the

async_to_sync wrapper, similar to Listing 9-29.

Listing 9-29. Channels login (sync)

from asgiref.sync import async_to_sync

from channels.auth import login

class SyncChatConsumer(WebsocketConsumer):

 ...

 def receive(self, text_data):

 ...

 async_to_sync(login)(self.scope, user)

 self.scope["session"].save()

Chapter 9 WebSoCketS With Django

362

You can log out a user with

async logout(self.scope)

or

async_to_sync(logout)(self.scope)

 Summary

This chapter serves as a good introduction to Django Channels, with

which you can add real-time capabilities to your Django application. You

learned how to implement the WebSocket protocol to broadcast messages

in a group. The Channels app provides additional features such as

authentication, using Redis Channel Layer, and integrating IoT protocols

like MQTT. However, discussion of these features is not within the scope of

this book. Hence, you can experiment with them by referring to the official

documentation and other resources.

The next chapter is a walkthrough for building a React frontend for

your Django REST API app.

Chapter 9 WebSoCketS With Django

363© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3_10

CHAPTER 10

ReactJS with Django
In the preceding chapters, you learned how to serve different protocols,

i.e., REST, GraphQL, and WebSocket, with Django apps and consume the

responses in the Django templates. This chapter focuses on developing a

client application using ReactJS, a popular JavaScript-based framework.

These are the important topics that will be covered in this chapter:

• ReactJS

• React app

• React Developer Tools

• What is Promise?

• useState hook

• useEffect hook

• Axios

• DRF backend

• Axios frontend

• Apollo

• Graphene-Django backend

• Apollo frontend

• React for WebSocket

https://doi.org/10.1007/979-8-8688-1472-3_10#DOI

364

 ReactJS

As you have learned in the very first chapter, Django follows the MVT

architecture, with the Template component taking care of the presentation

layer of a web application. A template is a web page interspersed with DTL

(Django Template Language) constructs to render dynamic content in

response to the user’s interaction.

However, the use of templates as a frontend of the applications has

certain limitations. First of all, templates are rendered on the server and

sent to the browser as static HTML. Hence, any changes in the UI require

a full-page reload, which results in a considerably lower performance.

The use of templates is suitable for simpler applications with minimal

interactivity.

On the other hand, applications based on JavaScript-based frameworks

provide client-side rendering; the DOM is updated dynamically without

refreshing the page. React is one of the most popular JavaScript libraries

for frontend development because it provides numerous advantages that

make building user interfaces (UIs) efficient, scalable, and developer-

friendly.

One of its advantages is the separation of concerns, with Django

managing the backend logic while React is responsible for the UI. On one

hand, Django’s powerful ORM is ideal for handling large amounts of data

and traffic. On the other, React with its virtual DOM feature leads to a

smooth user experience.

React library was first used by Facebook in 2011. Since then, it is being

maintained by Meta as a free and open source frontend JavaScript library,

with version 18.3 being the latest.

While a detailed discussion of the React API is out of the scope of this

book, a brief overview of its important features is taken here to give the

interaction between React and Django a proper perspective.

Chapter 10 reaCtJS with DJango

365

Virtual DOM: While displaying a web page, the browser interprets

the HTML code and builds the Document Object Model (DOM) as a tree

of HTML components and renders it. In order to minimize the reloading

action, ReactJS uses a virtual DOM, which is a lightweight, in-memory

representation of the actual Document Object Model (DOM). When the

state of any component is updated, React creates a new Virtual DOM

tree and compares it with the real DOM to identify and apply only the

differences, thus giving an improved performance in the case of dynamic

updates to the UI.

Components: Component is a basic building block of the React code.

One or more reusable components are added in hierarchical manner

to construct a single root component, which is then added to the root

element of the DOM. Components interact with each other through props

(properties), much like the arguments or parameters in a programming

language such as Python. You can declare a component as a function

component or a class component.

Hooks: A hook is a JavaScript function that facilitates access to the

features such as state and other lifecycle properties. The hook feature was

introduced in React 16.8; therefore, you don’t necessarily use the class

components. Different types of hooks are available.

State hooks let a component “remember” information, for example,

useState.

Context hooks let a component receive information from others, for

example, useContext.

Effect hooks let a component connect to and synchronize with external

systems, for example, useEffect.

Chapter 10 reaCtJS with DJango

366

 React App

A React application code basically consists of HTML, JavaScript, and

CSS. The two libraries needed – React and ReactDOM – can even be

included in the code via CDN. However, the recommended approach is

to use React build tools with the npm utility that is shipped with Node.js.

The create-react-app build tool is based on webpack and has been quite

popularly used. Nowadays, a new build tool – Vite – is the preferred build

tool for the latest versions of React, owing to its speed and efficiency.

To use Vite, you’ll need to ensure that you have Node.js and npm

installed on your system (if not already, install the latest versions from the

Node.js official website: https://nodejs.org/en).

To create a new React app, use the following command:

npm create vite@latest my-app

You may be prompted to choose a framework (choose React) and a

variant (choose JavaScript). This command initializes a new Vite project

with a React template. It will install the react and react-dom libraries.

Change to the project folder:

 cd my-app

To install the necessary dependencies for your React project, run the

following command:

 npm install

It will install the react and react-dom libraries. This can be verified

from the dependencies section in the package.json file inside the my-

app folder.

 "dependencies": {

 "react": "^18.3.1",

 "react-dom": "^18.3.1"

 }

Chapter 10 reaCtJS with DJango

https://nodejs.org/en

367

Now, start the Vite development server with the following command:

 npm run dev

> my-app@0.0.0 dev

> vite

 VITE v6.0.7 ready in 430 ms

 ➜ Local: http://localhost:5173/

 ➜ Network: use --host to expose

 ➜ press h + enter to show help

By default, the server listens at http://localhost:5173. You can set

alternative port number in the vite.config.js file. Visit the URL and you

should get the default home page in the browser (as in Figure 10-1), if the

installation steps are correctly executed.

Figure 10-1. Home page of React app

The project’s root folder includes, along with the required node modules,

index.html. This file (Listing 10-1) is the entry point of your application,

where your React application is mounted. It is present in the root directory.

Chapter 10 reaCtJS with DJango

368

Listing 10-1. index.html

<body>

 <div id="root"></div>

 <script type="module" src="/src/main.jsx"></script>

</body>

The project folder has the following important files inside its src folder:

App.jsx: The root component of your application

is defined here, having a default UI designed. The

App component displays the logos of React and Vite,

each linked to the respective home pages. You will

modify this code to add more components as per

the needs of your project.

main.jsx: This file (Listing 10-2) imports the App

component and attaches it to the root element in

the index.html file.

Listing 10-2. main.jsx

import { StrictMode } from 'react'

import { createRoot } from 'react-dom/client'

import './index.css'

import App from './App.jsx'

createRoot(document.getElementById('root')).render(

 <StrictMode>

 <App />

 </StrictMode>,

)

Chapter 10 reaCtJS with DJango

369

The createRoot() function lets you create a root to display React

components inside a browser DOM node. The use of StrictMode is

optional; it helps you find common bugs in your components.

Go ahead and edit the App.jsx file in your preferred IDE (such as VS

Code) and modify the App component (as in Listing 10-3) to render the

message React Frontend for Django API.

Listing 10-3. App.jsx

import './App.css'

function App() {

 return (

 <h1>Django + React</h1>

 <div className="App">

 React Frontend for Django API

 </div>

);

}

export default App

You must have noted that the files containing a React code have the

.jsx extension instead of .js, as a normal JavaScript file has. The JSX stands

for JavaScript XML. The .jsx file holds the React component design and

its logic and state. It allows you to write HTML-like and declarative code

within JavaScript. However, a React project may also have the normal .js

files. The convention says that jsx files contain the component-related

code and the JS files the non-UI code.

Note that the src folder also includes App.css, to define the styles to be

applied to different HTML elements.

Chapter 10 reaCtJS with DJango

370

 React Developer Tools

Most popular browsers (Chrome, Edge, etc.) have built-in Developer

tools with which you can debug HTML, CSS, and JavaScript code in

your web page. To inspect and debug the React code, you need to add

the React-specific development tools as the extensions available in the

respective stores. If the current page uses React, the Components and

Profile panels are visible. Figure 10-2 shows the React Developer Tools at

the bottom of the browser window.

Figure 10-2. React Developer Tools

Whether you’re a beginner or an experienced developer, a

comprehensive set of features in the React Developer Tools help you to

inspect the component hierarchy and optimize your applications. While it

is not possible here to explore these tools in detail, one is well advised to

look for other resources to master the React Developer Tools.

 What Is Promise?

In JavaScript (and React), promises are a fundamental tool for handling

asynchronous operations. A Promise is a special JavaScript object that

returns a value after an asynchronous operation is successfully completed,

or fails to complete successfully.

Chapter 10 reaCtJS with DJango

371

In life, you either fulfill a promise or you fail to keep it. The promise

object in JavaScript has three possible states. It is in pending state when an

executor function starts. It is said to be resolved when the operation succeeds,

and rejected when it fails. Any which way, the object reaches a settled state.

The Figure 10-3 illustrates how Promise works.

Figure 10-3. How Promise works

To create a Promise object, you need two parameters: resolve and reject.

const myPromise = new Promise((resolve, reject) => {

 // condition

});

If the condition is met, the Promise will be resolved; otherwise, it will

be rejected. JavaScript uses then() for resolved Promises and catch() for

rejected Promises.

myPromise.then((message) => {

 console.log(message);

}).catch((message) => {

 console.log(message);

});

In React, promises are often used to send and retrieve data from a

server. They are combined with hooks like useEffect and useState to

manage and render async data.

Chapter 10 reaCtJS with DJango

372

 useState Hook

While you can declare regular JavaScript variables inside a React

component, values of such local variables are not retained on every render

of the component. React has the provision of the state variable.

The state variable stores the value of a React component, which can

change as a result of user interaction. Change in the state variable triggers

the component to be re-rendered so that React components can return

active data updates and provide an ideal user experience.

Use the useState hook to add a state variable to the component.

Import it from the react module.

import { useState } from 'react'

It returns an array with two elements: the current state value and a

function to update that state value.

const [count, setCount] = useState(0)

The current value of count is 0, and the setCount() function causes it

to be changed. Let us call this function on the onClick event of a button, as

in the Listing 10-4. Every button click increments the count, and the App

component is re-rendered showing the incremental count.

Listing 10-4. useState hook

function App() {

 const [count, setCount] = useState(0)

 return (

 <h1>Hello World</h1>

 <div className="card">

 <button onClick={() => setCount((count) => count + 1)}>

Chapter 10 reaCtJS with DJango

373

 count is {count}

 </button>

 </div>

)

}

export default App

 useEffect Hook

The useEffect hook causes a function to be invoked every time a

component is rendered. Note that a component renders every time its

associated state changes.

The useEffect hook needs two arguments: a callback function to be

invoked and a dependency array.

useEffect(EffectCallback, deps)

The callback function is mandatory. If the deps array is provided, the

function will be called only when the value in the array changes.

In this example, in Listing 10-5, the useEffect hook displays a message

in the console every time the count state changes.

Listing 10-5. useEffect hook

import { useState, useEffect } from 'react'

import './App.css'

function App() {

 const [count, setCount] = useState(0)

Chapter 10 reaCtJS with DJango

374

 useEffect(() => {

 console.log('count changed:', count)

 }

 , [count])

 return (

 <h1>Hello World</h1>

 <div className="card">

 <button onClick={() => setCount((count) => count + 1)}>

 count is {count}

 </button>

 </div>

)

}

export default App

However, if the deps array is empty (pass [] as the second argument to

useEffect), the button click will increment the count, but the useEffect

function will not be called. This can be verified by the console log that

doesn’t show the subsequent change in the count.

 Axios

The primary objective of this chapter is to build a React app that acts

as a client for the Django APIs. Basically, you need a tool to issue HTTP

requests from within the React code. The two popular libraries used for

this purpose are Fetch and Axios. Fetch is a native JavaScript library

(hence, it doesn’t need any installation) for handling operations such as

GET/POST, whereas Axios is a third-party library (it needs to be installed

Chapter 10 reaCtJS with DJango

375

with npm). Axios is found to be more convenient because of its simpler

API, although Fetch also presents some significant advantages. We shall,

however, implement Axios library in this chapter.

Axios is a Promise-based HTTP client for the browser and Node.js.

(By the way, Fetch also supports Promise API.) It uses the native Node.

js http module on the server-side, while on the client (browser), it

uses XMLHttpRequests. This small yet simple-to-use library has a very

extensible interface.

Install Axios in your React project by running the following command:

npm install axios

Your package.json should show the updated dependencies section as

 "dependencies": {

 "axios": "^1.7.9",

 "react": "^18.3.1",

 "react-dom": "^18.3.1"

 }

To send HTTP requests using Axios, you first need an instance of axios

class (Listing 10-6), returned by the create() method.

Listing 10-6. Axios object

import axios from 'axios';

const API = axios.create({

 baseURL: 'https://example.com/api/'

});

Certain additional parameters such as timeout, headers, etc., may also

be passed. The axios object has all the required methods to place GET,

POST, PUT, and DELETE calls.

Chapter 10 reaCtJS with DJango

376

axios.get(url[, config])

axios.post(url[, data[, config]])

axios.put(url[, data[, config]])

axios.delete(url[, config])

As you can see, the post() and put() methods need to have a data

parameter for creating a new resource and updating an existing one. The

config parameter is optional.

The axios module also defines these convenience functions

corresponding to the instance methods.

axios.get(url[, config])

axios.post(url[, data[, config]])

axios.put(url[, data[, config]])

axios.delete(url[, config])

Let us experiment a little with one of the many free API services

available on the Internet for testing purpose. One such service is https://

restful-api.dev/; many publicly accessible endpoints of a REST API are

listed. One of them is https://api.restful-api.dev/objects/7, which

returns the details of a single object with the specified id.

{

 "id": "7",

 "name": "Apple MacBook Pro 16",

 "data": {

 "year": 2019,

 "price": 1849.99,

 "CPU model": "Intel Core i9",

 "Hard disk size": "1 TB"

 }

}

Chapter 10 reaCtJS with DJango

https://restful-api.dev/
https://restful-api.dev/
https://api.restful-api.dev/objects/7

377

Let us use this endpoint as an argument to the axios.get() function.

Create a new jsx file in your React project (Listing 10-7).

Listing 10-7. GET request with Axios

import React, { useEffect } from 'react'

import axios from 'axios'

function Api() {

 useEffect (() => {

 axios.get("https://api.restful-api.dev/objects/7")

 .then((Response) => {

 console.log(Response)

 })

 }, [])

 return (

 <div>

 GET API with Axios

 </div>

)

}

export default Api

You also need to modify the App.jsx file and render the Api component

in the App component, which is rendered as the root.

While this component simply renders a div element with a text (GET

API with Axios), the response returned by the GET endpoint is displayed

on the console. Open the Developer tools of your browser (shown in

Figure 10-4) after running the project; click on the Console tab to check

the data.

Chapter 10 reaCtJS with DJango

378

Figure 10-4. Developer console

The response object typically contains the following attributes:

data: The actual data returned by the API

status: The HTTP status code

headers: The response headers

config: The Axios request configuration

The Component tag in your browser’s Developer tools shows

(Figure 10-5) the Api component inside the App component and the

useEffect() hook.

Chapter 10 reaCtJS with DJango

379

Figure 10-5. Developer component tab

The response retrieved from the API can also be rendered in a React

component. Let’s use another free API to display a list of users from the

endpoint https://reqres.in/api/users?page=2.

This time, you will use useState along with the useEffect hook. The

axios object returns a JSON response of the users, with the user object

having attributes such as first_name, last_name, email, etc. The setData()

function of the useEffect hook stores it in the userData array, which is in

turn rendered in the component with the help of the map() function. Note

that the map function in JavaScript is similar to the for loop in Python. The

code snippet in Listing 10-8 obtains the response using the Axios library.

Chapter 10 reaCtJS with DJango

https://reqres.in/api/users?page=2

380

Listing 10-8. Get response with Axios

import React, { useEffect, useState } from 'react'

import axios from 'axios'

function Api() {

 const [userData, setData] = useState([]);

 useEffect (() => {

 axios.get("https://reqres.in/api/users?page=2")

 .then((Response) => {

 console.log(Response)

 setData(Response.data)

 })

 }, [])

 return (

 <div>

 <h2>GET API with Axios</h2>

 {userData.data?.map((item, index) => {

 return (

 <div key={index} style={{border: "1px solid", margin:

"10px", padding: "10px"}}>

 <p>Name: {item.last_name}, {item.first_name}

Email: {item.email}</p>

 </div>

)

 })}

 </div>

)

}

export default Api

Chapter 10 reaCtJS with DJango

381

Fire the Vite server and visit the URL http://localhost:5173 to display

the list of users returned by the REQRES API. The Figure 10-6 shows the

output in the browser window.

Figure 10-6. Axios GET response

Your React app is almost ready to be used as the frontend. You only

have to replace the REQRES endpoint with that of a backend API built with

Django REST Framework.

 DRF Backend

In one of the earlier chapters, you learned how to build a Django API

with serializers and generic views in Django REST Framework. The only

difference here is that instead of the Django templates, the frontend would

be a React app. This requires a significant modification in the project’s

settings.

Chapter 10 reaCtJS with DJango

382

 Cross-Origin Resource Sharing (CORS)

By default, the Django server runs at http://localhost:8000, while the

default URL of your React app is http://localhost:5173. To allow the Django

server to respond to any requests outside its domain, you need to use

the cross-origin resource sharing feature. If not, the server throws the An

unauthorized status (403) error.

Servers usually have a same-origin policy. The CORS mechanism

enables it to be bypassed. For that to happen, you need to tell the server

which domains to allow access to its resources.

In the Django ecosystem, the django-cors-headers package allows in-

browser requests to your Django application from other origins.

Naturally, you need to install it in the current Python environment

with PIP:

pip install django-cors-headers

To enable CORS support in the Django project, add 'corsheaders'

in INSTALLED_APPS along with 'rest_framework' and 'corsheaders.

middleware.CorsMiddleware' in the MIDDLEWARE list of its settings.

py file.

The CORS_ALLOWED_ORIGINS parameter is a sort of a white list of

domains allowed to send requests to the Django server. Add the URL of the

Vite server in this list.

CORS_ALLOWED_ORIGINS = [

 "http://localhost:5173",

]

That’s it. Your Django project is now capable of acting as a backend to

the React app. The rest of the steps are similar to those done by you in the

previous chapter (Chapter 7). Here is a quick run-through of the steps:

Chapter 10 reaCtJS with DJango

383

• Model: We shall use the Ticket model (Listing 10-9)

that was used earlier in the book.

Listing 10-9. Ticket model

class Ticket(models.Model):

 flight_number = models.CharField(max_length=10)

 passenger_name = models.CharField(max_length=100)

 departure_time = models.DateTimeField()

 seat_number = models.CharField(max_length=5)

• Serializer: Write a ModelSerializer class based on the

above model. Refer to the Listing 10-10.

Listing 10-10. TicketSerializer

class TicketSerializer(serializers.ModelSerializer):

 class Meta:

 model = Ticket

 fields = "__all__"

• Views: Define the generic views in views.py

(Listing 10-11) – TicketListCreateView for handling GET

and POST requests and TicketRetrieveUpdateDeleteView

for handling GET, PUT, and DELETE requests.

Listing 10-11. Views

class TicketListCreateView(generics.ListCreateAPIView):

 queryset = Ticket.objects.all()

 serializer_class = TicketSerializer

class TicketRetrieveUpdateDeleteView(generics.

RetrieveUpdateDestroyAPIView):

Chapter 10 reaCtJS with DJango

384

 queryset = Ticket.objects.all()

 serializer_class = TicketSerializer

A view function acting as an API root is

always useful.

@api_view(['GET'])

def api_root(request, format=None):

 return Response({

 'tickets': reverse('ticket-list',

request=request, format=format),

 'ticket-detail': reverse('ticket-detail',

args=[1], request=request, format=format),

 })

• Map these views to suitable URL routes in the urls.py

file, as in Listing 10-12.

Listing 10-12. URL routes

urlpatterns = [

 path('', views.api_root, name='api-root'),

 path('tickets/', views.TicketListCreateView.as_

view(), name='ticket-list'),

 path('tickets/<int:pk>/', views.TicketRetrieve

UpdateDeleteView.as_view(), name='ticket-

detail'),

]

Lastly, update the URLCONF of the project. Run the

development server and test the functionality with DRF’s browsable

API. The expected output is shown in Figure 10-7.

Chapter 10 reaCtJS with DJango

385

Figure 10-7. Api root of Django REST app

 Axios Frontend

Create a new React project with the Vite build tool. Add the Api.jsx file in the

src folder (Listing 10-13) to declare an object of axios class. This time use the

URL of your Django API as the baseURL (follow the steps explained earlier).

Listing 10-13. Api.jsx

import axios from 'axios';

const API = axios.create({

 baseURL: 'http://127.0.0.1:8000/api/',

});

export default API;

Chapter 10 reaCtJS with DJango

386

Next, create a new file to define the TicketList component. It employs

the useEffect and useState hooks to fetch all the tickets in the backend

database and render the list in the App component. You will also be

creating another component to display a form for the user to fill and use

the data to send a POST request.

At this juncture, your root component should provide two things: one,

a navigation bar to let the user select actions such as view the list, book a

new ticket, and update or delete a ticket, and two, a routing mechanism

(similar to URLCONF in Django) to map the URLS to the respective

components.

First about the routing. The 'react-router-dom' is a declarative

routing library that helps in matching the URL to components, thus

providing navigation around the app.

First, you need to install this library with npm package manager.

npm install react-router-dom

BrowserRouter is an important component in this library. It

uses the browser’s built-in HTML5 history API to manage navigation

between different pages or components in your React application and

ensures the app’s URL is updated in the browser as the user navigates.

The typical usage of BrowserRouter is shown in Listing 10-14.

Listing 10-14. Routing in React

import { BrowserRouter as Router } from 'react-router-dom';

const App = () => (

 <Router>

 {/* Routes and components go here */}

 </Router>

);

export default App;

Chapter 10 reaCtJS with DJango

387

Multiple Route components are included inside the <Routes> … </

Routes> construct. Each Route component is used to define a mapping

between a specific URL path and the component.

Assuming that the TicketList component is mapped with the /

list endpoint and the AddTicket component to the /add endpoint, the

routing mechanism of your root App component would be as shown in

Listing 10-15.

Listing 10-15. Routing in App.jsx

import { BrowserRouter as Router, Route, Routes, Link } from

'react-router-dom';

import TicketList from './TicketList';

import AddTicket from './AddTicket';

import Home from './Home';

<Router>

 <div>

 <Routes>

 <Route path="/" element={<Home />} />

 <Route path="/list" element=

{<TicketList />} />

 <Route path="/add" element=

{<AddTicket />} />

 </Routes>

 </div>

 </Router>

Additionally, providing a neat navigation bar will give an enhanced

user experience. In React, the <Link> component is used to define

hyperlinks (Listing 10-16). For example, <Link to="/">Home</Link>

navigates to the root route (/).

Include the navigation code inside the Router component.

Chapter 10 reaCtJS with DJango

388

Listing 10-16. Navigation in App.jsx

<nav className="navbar">

 <ul className="navbar-list">

 <li className="navbar-item">

 <Link to="/">Home</Link>

 <li className="navbar-item">

 <Link to="/list">List</Link>

 <li className="navbar-item">

 <Link to="/add">New</Link>

 <li className="navbar-item">

 <Link to="/update">Update</Link>

 <li className="navbar-item">

 <Link to="/delete">Delete</Link>

</nav>

 TicketList Component

Let us now turn to the TicketList component. It employs the useState

hook to fetch the list of tickets in a userData state variable. When the

TicketList component is first rendered, the Api.get() method retrieves

the data. The state change causes the list to be rendered. As before the

map() function is used to iterate through the list. The code for ticketList.jsx

component is as per the Listing 10-17.

Chapter 10 reaCtJS with DJango

389

Listing 10-17. ticketList.jsx

function TicketList() {

 const [userData, setData] = useState([]);

 useEffect(() => {

 API.get("tickets/")

 .then((response) => {

 console.log(response.data); // Check the structure of

the data

 setData(response.data);

 })

 .catch((error) => {

 console.error("Error fetching data:", error);

 });

 }, []);

 return (

 <div>

 <h2>Ticket List</h2>

 {userData.map((item, index) => (

 <div key={index} style={{border: "1px solid", margin:

"10px", padding: "10px"}}>

 <p>Name: {item.passenger_name} Flight

No: {item.flight_number}

 Seat No: {item.seat_number}</p>

 </div>

))}

 </div>

);

}

Chapter 10 reaCtJS with DJango

390

When visited, the TicketList component renders the list (Figure 10-8).

Figure 10-8. TicketList component of React frontend

 AddTicket Component

This component is expected to render an HTML form for the user to fill the

passenger data. We shall use the built-in browser <form> component that

creates interactive controls for submitting information. For example:

<form action={search}>

 <input name="query" />

 <button type="submit">Search</button>

</form>

Chapter 10 reaCtJS with DJango

391

The <input> component lets you render different kinds of form inputs.

You basically input component of text type to receive values for the model

attributes such as name, flight number, etc. One such input element is

shown in Listing 10-18.

Listing 10-18. Input element in React

<form onSubmit={handleSubmit}>

 <div>

 <label>Flight Number:</label>

 <input

 type="text"

 name="flight_number"

 value={ticket.flight_number}

 onChange={handleChange}

 required

 />

 </div>

The form submission is handled by the handleSubmit() function.

Internally it raises the POST request to the tickets/ URL with the form data

to be used for creating a new Ticket resource. The useState hook records

the state of all the input elements. If the server responds with a success

message, the form is again reset. Listing 10-19 shows the abbreviated code

for the AddTicket component.

Listing 10-19. AddTicket component

const AddTicket = () => {

 const [ticket, setTicket] = useState({

 flight_number: '',

 passenger_name: '',

Chapter 10 reaCtJS with DJango

392

 departure_time: '',

 seat_number: '',

 });

 const [successMessage, setSuccessMessage] = useState('');

 const [errorMessage, setErrorMessage] = useState('');

 // Handle form input change

 const handleChange = (e) => {

 const { name, value } = e.target;

 setTicket({ ...ticket, [name]: value });

 };

 // Handle form submission

 const handleSubmit = (e) => {

 e.preventDefault();

 setSuccessMessage('');

 setErrorMessage('');

 axios.post('tickets/', ticket)

 .then((response) => {

 setSuccessMessage('Ticket added

successfully!');

 setTicket({ flight_number: '', passenger_name:

'', departure_time: '', seat_number: '' }); //

Clear form

 console.log(response.data);

 })

 .catch((error) => {

 setErrorMessage('Failed to add ticket. Please

try again.');

 console.error(error);

 });

 };

Chapter 10 reaCtJS with DJango

393

 return (

 <div>

 <h2>Book New Ticket</h2>

 <form onSubmit={handleSubmit}>

 <div>

 //input component for flight_number

 </div>

 <div>

 //input component for passenger_name

 </div>

 <div>

 //input component for departure_time

 </div>

 <div>

 //input component for seat_number

 </div>

 <button type="submit">Submit</button>

 </form>

 {successMessage && <p style={{ color: 'green'

}}>{successMessage}</p>}

 {errorMessage && <p style={{ color: 'red' }}>

{errorMessage}</p>}

 </div>

);

};

export default AddTicket;

The AddTicket component renders a booking form as shown in

Figure 10-9.

Chapter 10 reaCtJS with DJango

394

Figure 10-9. AddTicket component

 Apollo

You already know how to build a Django app that serves a GraphQL API

(Chapter 8). While you can consume the data served by the app (built

with Strawberry-Django or Graphene-Django) with a Django view and

template – for which you’ll need to perform the HTTP operations using the

requests library – a better approach would be to use a client-

side application for this purpose. A frontend React app will provide an

enhanced user experience while interacting with the GraphQL server.

Chapter 10 reaCtJS with DJango

395

Apollo is one of the popular and a comprehensive set of tools that

helps in building scalable applications with GraphQL. Apollo has a server

component (which we are not going to use here, as we already have a

GraphQL server built with Django) and the Apollo Client library that is

very easy to integrate in a React app.

Apollo Client is a JavaScript library that facilitates the state

management of local and remote data with GraphQL. With its declarative

data fetching mechanism, you can easily query and fetch the data without

having to manually track the state manually.

To let your React app interact with Django’s GraphQL server, you first

need to install the Apollo Client library. With the command terminal

logged in the React app directory, use the following command:

npm install @apollo/client graphql

The updated dependencies section of your package.json file

should be like

 "dependencies": {

 "@apollo/client": "^3.12.5",

 "graphql": "^16.10.0",

 "react": "^18.3.1",

 "react-dom": "^18.3.1"

 },

Apollo Client is a comprehensive library with quite a few classes and

methods defined in it. Out of which, a brief overview of some is worth

taking a look in order to understand how the GraphQL data is handled by

your React app.

The ApolloClient class is the most important part of Apollo’s client-

side library and is responsible for providing the view-layer integration with

React. An ApolloClient object handles fetching, caching, and managing

Chapter 10 reaCtJS with DJango

396

data from your GraphQL API. The constructor needs two arguments: uri

(the endpoint of your GraphQL API) and cache (specifying the caching

strategy). Listing 10-20 shows the construction of ApolloClient object.

Listing 10-20. ApolloClient object

import { ApolloClient, InMemoryCache } from '@apollo/client';

const client = new ApolloClient({

 uri: "GraphQL API endpoint",

 cache: new InMemoryCache(),

});

The ApolloProvider is a React component that connects your Apollo

Client instance to your React app. It is also defined in the @apollo/

client package. The root App component of your React app returns the

ApolloProvider object, which makes it possible for the child components

to execute GraphQL queries and mutations (Listing 10-21).

Listing 10-21. ApolloProvider component

import { ApolloProvider } from "@apollo/client";

function App() {

 return (

 <ApolloProvider client={client}>

 <div className="App">

 <h1>React with Django GraphQL</h1>

 <BookList />

 </div>

 </ApolloProvider>

);

}

Here, the BookList component executes a GraphQL query to fetch all

the books in a database.

Chapter 10 reaCtJS with DJango

397

You have used a couple of React hooks (useState and useEffect) in

the previous section. Apollo Client provides its own React hook called

useQuery. The useQuery() function uses a GraphQL query string as an

argument and returns an object having the properties loading, error, and

data. The query string is returned by the gql() function. It is a template

literal tag provided by Apollo Client, used to write GraphQL queries and

mutations.

For example, when the allBooks query you used in the previous

chapter (Chapter 8) is passed to the gql() function, it parses into its

Apollo-compatible form. Refer the Listing 10-22 for the typical use of gql()

function.

Listing 10-22. gql() function

const GET_DATA = gql`

 query {

 MyQuery {

 field1

 field2

 . . .

 }

}

`;

The useQuery function then uses the object returned by gql().

const { loading, error, data } = useQuery(MyQuery);

Here, loading indicates if the query is in progress; its value is either

True or False. Errors, if any, are stored in the error property. The data

property contains the result of the query. It is then used to render the

fetched rows in the App component.

Chapter 10 reaCtJS with DJango

398

 Graphene-Django Backend

In a previous chapter (Chapter 8), you learned how to build a Graphene-

Django project that serves a GraphQL API. We shall use the same code

base with a few React-related tweaks. Let us quickly go through the steps to

set up the GraphQL API:

• As in the previous section, you need to include

'corsheaders' in the INSTALLED_APPS list and also

'corsheaders.middleware.CorsMiddleware' in the

MIDDLEWARE list in the settings.py file. You also

have to add the URL of the React Vite server (http://

localhost:5173) in the CORS_ALLOWED_ORIGINS list.

You also need to tell Django to use Graphene Schema

object from the app’s schema.py file.

• We shall be using the Book model as done earlier

(reproduced here in Listing 10-23).

Listing 10-23. Book model

class Book(models.Model):

 id = models.IntegerField(primary_key=True)

 title = models.CharField(max_length=50)

 author = models.CharField(max_length=50)

 price = models.IntegerField()

 publisher = models.CharField(max_length=50)

 class Meta:

 db_table = "books"

• Define a BookType class (Listing 10-24) that inherits

DjangoObjectType.

Chapter 10 reaCtJS with DJango

399

Listing 10-24. BookType

class BookType(DjangoObjectType):

 class Meta:

 model = Book

 fields = ("id", "title", "author", "publisher",

"price")

• Define a Query class with all_books and book

properties and the corresponding resolver methods

(as in Listing 10-25).

Listing 10-25. Graphene query

class Query(graphene.ObjectType):

 all_books = graphene.List(BookType)

 book = graphene.Field(BookType, id=graphene.Int())

 def resolve_all_books(self, info):

 return Book.objects.all()

 def resolve_book(self, info, id):

 try:

 return Book.objects.get(pk=id)

 except Book.DoesNotExist:

 return None

A Schema class constructor uses this Query to return the

Schema object.

• As done earlier, define the generic

views (TicketListCreateView and

TicketRetrieveUpdateDeleteView), and register

the GraphQLView with the "graphql/" endpoint.

Listing 10-26 shows the updated urlpatterns list.

Chapter 10 reaCtJS with DJango

400

Listing 10-26. URL route for GraphiQL

from django.contrib import admin

from django.urls import path, include

from graphene_django.views import GraphQLView

from django.views.decorators.csrf import csrf_exempt

urlpatterns = [

 path('admin/', admin.site.urls),

 path('api/', include('api.urls')),

 path("graphql/", csrf_exempt(GraphQLView.as_

view(graphiql=True))),

]

The URL http://localhost:8000/graphql/ should present the GraphiQL

interface so that you can execute the allBooks query. Your GraphQL

backend is now ready to be used as a backend to the React app.

 Apollo Frontend

To start with, create a new React app with the Vite build tool. It renders the

App component as the root of the DOM. Create a new JSX file (BookList.

jsx) in the project’s src folder. You need to declare an object of AppClient

class in the App.jsx file (refer Listing 10-27), with the endpoint of Django’s

GraphQL API as its uri parameter.

Listing 10-27. Root component for Apollo app

import { ApolloClient, InMemoryCache, ApolloProvider } from

"@apollo/client";

import BookList from "./BookList";

Chapter 10 reaCtJS with DJango

401

const client = new ApolloClient({

 uri: "http://localhost:8000/graphql/",

 cache: new InMemoryCache(),

});

function App() {

 return (

 <ApolloProvider client={client}>

 <div className="App">

 <h1>React with Django GraphQL</h1>

 </div>

 </ApolloProvider>

);

}

export default App

 BookList Component

This React component is expected to fetch the result of a GraphQL query

to be run over the Book model. The GraphQL query is first fed to the gql()

function.

Listing 10-28. GET_BOOKS query

import { gql } from "@apollo/client";

const GET_BOOKS = gql`

 query {

 allBooks {

 id

 title

 author

Chapter 10 reaCtJS with DJango

402

 publisher

 price

 }

}

`;

The GET_BOOKS object (as in Listing 10-28) is used as an argument to

the useQuery hook and fetches the JSON representation of the list of books

(Listing 10-29).

Listing 10-29. BookList component

import { useQuery} from "@apollo/client";

function BookList() {

 const { loading, error, data } = useQuery(GET_BOOKS);

 console.log("Query Response:", { loading, error, data });

 if (loading) return <p>Loading...</p>;

 if (error) return <p>Error: {error.message}</p>;

 if (loading) return <p>Loading...</p>;

 if (error) return <p>Error: {error.message}</p>;

 return (

 {data.allBooks.map((book) => (

 <li key={book.id}>

 {book.title} by {book.author}

))}

);

 }

export default BookList;

Chapter 10 reaCtJS with DJango

403

The data returned by Apollo Client has the data attribute. Along with

the other HTTP-related attributes, it returns the query result in allBooks

property, which in turn is identified by the model attributes such as title,

author, etc. Use the map() function to render the book details as a part of

the BookList component.

Finally, update your App.jsx file (refer to the Listing 10-30) to include

the BookList component inside the root App Component.

Listing 10-30. App.jsx for Apollo app

function App() {

 return (

 <ApolloProvider client={client}>

 <div className="App">

 <h1>React with Django GraphQL</h1>

 <BookList />

 </div>

 </ApolloProvider>

);

}

export default App

That’s it. Run the React app (ensure that the Django server is running

and the GraphQL queries are executed correctly in the GraphiQL

interface). You should get a list of all the books and their authors rendered

in your browser.

As an exercise, you can add another component to perform mutation.

You can also refer to the previous section to add routing in the App

component.

Chapter 10 reaCtJS with DJango

404

 React for WebSocket

In the previous chapter (Chapter 9), we had used JavaScript code inside

an HTML script to establish connection with the WebSocket endpoint

provided by a Django Channels application. Now, we shall build a simple

React app that works as the client for the Channels application.

Start by creating a new React app with the help of the Vite build tool.

You need to define a component that lets the user open a WebSocket

connection on the server and send a message. The server broadcasts

messages to all the connected clients.

Open a new code window in your IDE as ChatApp.jsx. In the

WebSocket client code, you have to record the states of username and

whether a username is set, the message to be sent, and a log of messages

from all the clients (Listing 10-31). This is done with the useState() hook.

Listing 10-31. ChatApp states

const [name, setName] = useState('');

const [isNameSet, setIsNameSet] = useState(false);

const [message, setMessage] = useState('');

const [messages, setMessages] = useState([]);

const [chatSocket, setChatSocket] = useState(null);

When the ChatApp component is first rendered, the useEffect()

hook will be invoked, and it will request a connection with the WebSocket

server, which is live on the Django application that is running in the

background.

const socket = new WebSocket('ws://127.0.0.1:8000/ws/socket-

server/');

Once the connection request is accepted, your React app will ask the

user to enter a username, as per the Listing 10-32.

Chapter 10 reaCtJS with DJango

405

Listing 10-32. Chat app login screen

<form onSubmit={handleNameSubmit}>

 <h1>Welcome to the Chat</h1>

 <input

 type="text"

 placeholder="Enter your name"

 value={name}

 onChange={(e) => setName(e.target.value)}

 required

 />

<nbsp> </nbsp>

 <button type="submit">Join</button>

</form>

The browser should display an input text box for the username to be

entered. Figure 10-10 represents the login screen of your chat app.

Figure 10-10. Login screen of Chat app

Chapter 10 reaCtJS with DJango

406

The user input will be stored in the state variable name and also

isNameSet set to True. This is performed by the handleNameSubmit()

function.

 const handleNameSubmit = (e) => {

 e.preventDefault();

 setIsNameSet(true);

 };

If the user has entered a username, you should get an interface

(Listing 10-33) to enter and send a message. This is stored in a state

variable message.

Listing 10-33. Chat interface

<h1>Welcome, {name}!</h1>

<form onSubmit={handleMessageSubmit}>

 <input

 type="text"

 placeholder="Type your message"

 value={message}

 onChange={(e) => setMessage(e.target.value)}

 required

 />

 <nbsp> </nbsp>

 <button type="submit">Send</button>

</form>

The browser shows the chat interface as in Figure 10-11.

Chapter 10 reaCtJS with DJango

407

Figure 10-11. Chat interface

With the help of the handleMessagesubmit() function (the code

given in 10-34), the text entered in the input element is sent with the

chatSocket.send() method.

Listing 10-34. Handler to send message

 const handleMessageSubmit = (e) => {

 e.preventDefault();

 if (chatSocket && chatSocket.readyState ===

WebSocket.OPEN) {

 chatSocket.send(JSON.stringify({ message: `${name}:

${message}` }));

 setMessage('');

Chapter 10 reaCtJS with DJango

408

 } else {

 console.error('WebSocket is not open. Cannot send

message.');

 }

 };

In response, the server will broadcast the received messages to all the

clients (Listing 10-35). The client component adds it to the list.

Listing 10-35. Handler to receive messages

socket.onmessage = (event) => {

 const data = JSON.parse(event.data);

 if (data.type === 'chat') {

 setMessages((prevMessages) => [...prevMessages, data.

message]);

 }

};

The ChatApp component then renders all the message in the list by

running the map() loop.

 <div id="messages">

 {messages.map((msg, index) => (

 <div key={index}>

 <p>{msg}</p>

 </div>

))}

 </div>

Now, all you have to do is to embed the ChatApp component inside the

App component that is loaded as the root component (refer Listing 10-36)

of the DOM.

Chapter 10 reaCtJS with DJango

409

Listing 10-36. Root component of Chat app

import React from 'react';

import ChatApp from './ChatApp';

const App = () => {

 return (

 <div>

 <ChatApp />

 </div>

);

};

export default App;

The chat log will appear in the messages div element.

The screenshot of the browser output is shown in Figure 10-12.

Figure 10-12. Chat log

Chapter 10 reaCtJS with DJango

410

As far as the backend is concerned, you don’t need to make any

changes to the Channels application used in the previous chapter

(Chapter 9), except for adding the CORS settings. You can refer to the

previous section of this chapter for the steps in CORS configuration.

 Summary

This was the last chapter of this book. Our journey has reached the last

stop, where you have learned how to provide React frontend solutions

for the Django REST, GraphQL, and Channels apps. Along the way, the

JavaScript libraries Axios and Apollo Client were introduced.

Starting with the basics of HTTP and asyncio, this book navigated

you through the core concepts of Django (such as model, view, and

templates) as well as the advanced concepts such as messages framework,

authentication, and using SQLAlchemy. The second half of the book

covered how Django implements the REST, GraphQL, and WebSocket

protocols, culminating in this chapter on React with Django. With this,

hopefully this book has given an experience of full-stack web application

development with the Django ecosystem as its backend and React as its

frontend.

Chapter 10 reaCtJS with DJango

411© Malhar Lathkar 2025
M. Lathkar, Modern Django Web Development,
https://doi.org/10.1007/979-8-8688-1472-3

Index

A

Adapter functions, 217

add_message() methods, 193

AddTicket component,

387, 390–394

Admin interface

adding user, 46, 47

createsuperuser command, 44

django.contrib.admin app, 43

home page, 46

internal management tool, 43

login screen, 45, 46

migrate command, 44

types

active, 48

staff, 47

superuser, 47

urls.py file, 43

user permissions, 48

Alembic, 156–161

Anti-CSRF mechanism, 208

API, see Application Programming

Interface (API)

Api.get() method, 388

api_root() function, 242

Api root, Django REST app, 385

API services, 14

api_view() decorator, 239

Apollo

arguments, 396

BookList component, 401–403

client, 395

data fetching mechanism, 395

dependencies, 395

frontend, 400, 401

gql() function, 397

graphene-Django

backend, 398–400

GraphQL, 395, 396

server component, 395

ApolloClient object, 395

ApolloProvider component, 396

Application Programming

Interface (API)

description, 230

environments, 230

payment apps, 230

protocols and specifications,

232, 233

social login, 230, 231

software applications, 230

weather apps and websites, 231

ASGI, see Asynchronous Server

Gateway Interface (ASGI)

Ariadne, 308

https://doi.org/10.1007/979-8-8688-1472-3#DOI

412

AsyncGraphQLView, 316

asyncHello() function, 17

Asynchronous consumer, 348

Asynchronous processing

asyncio module, 16–18

multithreading, 16

web servers, 16

Asynchronous Server Gateway

Interface (ASGI), 19–20

Asynchronous views (async

views)

adapter functions, 217

ASGI server, 213

async_call() function, 216

async Querysets, 218

definition, 214

helper function, 216

HTTPX library, 215

install Uvicorn, 214

sleep() function, 215

terminal log, 214

Asyncio module, 16–18

async_to_sync(), 217

Atlas, 163

connection string, 165

Authentication system, 229

admin home page, 204

admin interface, 197

browsable API, 279

description, 276

login and logout, 198–201

@login_required(), 204–206

managerial tasks, 197

new user, 202–204

permission_classes

attribute, 278

permission types, 278

python manage.py

createsuperuser, 198

redirect login page, 206

schemes, 277

TokenAuthentication, 280–288

unauthenticated request, 279

AuthMiddleware, 350

AuthMiddlewareStack, 350, 360

Axios

API services, 376

attributes, 378

component tab, 378, 379

console, 377, 378

definition, 375

dependencies, 375

DRF backend, 381–384

frontend

AddTicket component,

387, 390–393

creation, 385

navigation, 387

routing, 386, 387

TicketList component,

386–388, 390

GET request, 377

GET response, 379, 381

HTTP requests, 375

installation, 375

module, 376

parameters, 375

axios.get() function, 377

INDEX

413

B

BasicAuthentication, 277, 280

Binary JSON (BSON), 162

BookList component, 401–403

BooleanField, 74

BrowserRouter, 386

C

Cacheability, 234

Callback function, 373

Channel layers, 347

backends, 355

definition, 354

distributed real-time

application, 354

groups, 356–358

in-memory layer, 355

setting, 355

single channel, 356

Channels architecture, 347

channels.layers.get_channel_

layer(), 354

CharField, 73

Chat app

interface, 406, 407

log, 359, 409

login screen, 404, 405

root component, 408

states, 404

chatSocket.send() method, 407

Class-based views,

111–114, 264–266

Client interface, 353

Client-server architecture, 234

Client-side frameworks, 12

Code on demand, 235

col.find(filter), 173

col.find_one(filter), 173

College model, 78

Common Gateway

Interface (CGI), 6, 7

CONNECT method, 5

Context hooks, 365

CookieMiddleware, 350

Cookies, 188, 189

Cooperative multitasking, 16, 18

Coroutines, 17, 19

CORS, see Cross-origin resource

sharing (CORS)

CreateAPIView, 267

createBook() function, 321

createRoot() function, 368

create_superuser() function, 48

create_user() function, 49

CreateView, 116–118

Cross-origin resource

sharing (CORS)

ecosystem, 382

mechanism, 382

model, 383

serializer, 383

URL routes, 384

views, 383, 384

Cross-site request forgery (CSRF),

101, 207–209

Cross-site scripting (XSS),

209, 210

INDEX

414

CRUD operations, 51, 52, 71, 153,

164, 184, 243, 247, 267, 270,

292, 317

CSRF, see Cross-site request

forgery (CSRF)

csrfmiddlewaretoken, 208

CsrfViewMiddleware, 101

CSS file, 131, 133, 134

D

Database API (DB-API)

books table, 54

books view, 55, 56

create table, 53

definition, 52

execute() method, 53, 54

issues, 57

relational databases, 52

SQLite, 52–54

update urlpatterns, 55, 56

Database interaction, 14

DateField, 74

Data integrity, 77

Data redundancy, 77

DB-API, see Database API (DB-API)

Debug toolbar

admin home page, 225

application routes, 225

MIDDLEWARE list, 225

panels, 226

request panel, 228

reusable app, 224

SQL explained, 227

SQL panels, 226, 227

use cases, 223

web applications, 224

DeclarativeBase class, 152

DefaultRouter, 274

delete_cookie() method, 189

DELETE method, 5

delete_one() method, 175

DeleteView, 119–121

demo_app() function, 9

Deserialization, 235, 237

deserialize() function, 236

DestroyAPIView, 268

DetailView, 121, 122

Django

apps

add, 35

admin site, 43–49

components, 34

MVT approach, 34

path parameters, 38–40

route, 38

serving web pages, 40–42

structure, 34

URLCONF, 37, 38

URL pattern, 36, 37

views, 35

async views, 213–218

authentication, 197–206

channels, 289, 344–347

components, 21

debug toolbar, 223–228

documentation and support, 22

GraphQL (see GraphQL)

INDEX

415

installation

Python, 24

Ubuntu, 24–27

Windows, 28

messages (see Messages

framework)

ORM (see Object-relational

mapper (ORM))

ReactJS (see ReactJS)

REST API, 229

reusable apps, 218–223

scalability, 22

security features, 207–213

setting up

activity log, 31

administrative tasks, 30

ASGI-compatible mode, 33

asgi.py, 30

components, 29

django-admin utility, 29

parameters, 30

project structure, 29

server, 32

settings.py, 30

urls.py, 30

WSGI-compatible

framework, 32

wsgi.py, 30

template language (see

Templates)

utility apps, 21

version, 1, 24

web development, 1

WebSocket (see WebSockets)

Django-admin utility, 27, 29

Django Ninja, 288

decorator methods, 290

dependencies, 289

features, 289, 290, 297

HTTP methods, 297

JSON response, 294

NinjaAPI object, 290

Pydantic data validation, 289

schema, 292

Swagger UI, 291, 293, 295, 297

Django REST Framework (DRF), 237

alternatives, 288, 289

api root, 243, 275, 276

api_view() decorator, 239

authentication, 238, 276–288

authorization, 238

browsable API, 240, 241

class-based views, 239, 264–266

CRUD operations, 243

description, 238

features, 238

generic views, 267–270

ModelSerializer (see

ModelSerializer)

package, 238

PIP installer, 238

reverse() function, 242

routers, 273–275

serializer class (see

Serialization)

URL route, 240

using APIView, 266

ViewSets, 271–273

INDEX

416

Django Software Foundation, 21

Django-sorcery package, 161

Django Template Language (DTL),

86, 90, 92, 105, 364

Djongo, 170

DATABASES configuration, 185

drawbacks, 186

hybrid model, 184

installation, 184

migrations, 185

mongodb query transpiler, 184

project’s settings, 185

Document object model

(DOM), 365

Document schema, 177

dot (.) operator, 92

Downgrade command, 160

DynamicDocument, 181–183

Dynamic schema, 186

E

Effect hooks, 365

Environment variables, 213

execute() method, 53, 54, 58, 212

Extensible Markup Language

(XML), 235

eXternal Data Representation

(XDR), 232

F

Fetch, 374

fetchone() method, 56

Field types

API methods, 73

attribute, 72

BooleanField, 74

CharField, 73

DateField, 74

FloatField, 74

IntegerField, 73

File uploads, 13

filter() method, 69, 71

find() method, 174

FloatField, 74

Foreign key, 76, 77

Form templates

class, 103–107

HTML, 100, 102, 103

ModelForm, 108–111

view functions, 100

Full stack frameworks, 13

Function-based views, 269, 281

G

Generic Security Service

Application Program

Interface (GSSAPI), 171

Generic views

categories, 267

CreateView, 116–118

CURD operations, 267

database models, 267

DeleteView, 119–121

DetailView, 121, 122

function-based views, 269

INDEX

417

HTML form, 270, 271

HTML templates, 267

ListView, 122–125

request handlers, 269

special-purpose class, 114

syntax pattern, 268

TemplateView, 114–116

UpdateView, 118, 119

urlpatterns, 268, 270

get() method, 67, 71

getbook() function, 105, 110

getbook() view function, 175

get_context_data() method, 123

get_cookie() method, 189

GET method, 4

get_object() method, 120

Google Remote Procedure Call

(gRPC), 232

gql() function, 397, 401

Graphene, 308, 309

execute() function, 325, 326

features, 322

mutations, 328

mutation string, 329

object type, 323

query, 324, 327

resolver method, 324, 325, 327

scalar types, 323

schema-first approach, 322

Graphene-Django, 289

abstractions, 330

schema, 334

configuration, 331

DjangoObjectType class, 331

installation, 330

mutation, 333

ORM models, 308

queries, 332

root schema, 331

URLCONF, 332

Graphene-Django project, 398–400

GraphiQL interface, 312, 313,

315, 319

GraphQL

API technology, 299

architecture, 301, 302

Graphene, 322–330

Graphene-Django, 330–334

mutation, 314

and Python, 308, 309

vs. REST, 300, 301

schema, 308

SDL (see Schema definition

language (SDL))

Strawberry, 309–316

Strawberry-Django, 316–322

GraphQLView, 317, 332

group_add() method, 357

group_discard() method, 357

Groups, 356, 357

group_send() method, 357

H

handleMessagesubmit()

function, 407

handleNameSubmit()

function, 406

INDEX

418

handleSubmit() function, 391

HEAD method, 5

Hooks, 365

HTML form, 100, 102, 103

HTTP, see Hypertext Transfer

Protocol (HTTP)

HyperlinkedModel

Serializer, 259–263

Hypertext Transfer

Protocol (HTTP)

client-server communication

model, 2

constituents, 3

DELETE method, 5

GET method, 4

limitations, 335

POST method, 4

PUT method, 5

request-response cycle, 2

verbs/methods, 234

I

Inheritance

{% block %} tag, 139, 140

definition, 134

{% extends %} tag, 140–143

{% include %} tag,

135, 136, 138

web pages, 135

In-memory channel

layer, 355

insertOne() function, 166

IntegerField, 73

J, K

JavaScript, 131, 133, 134, 353

JavaScript Object Notation (JSON),

235, 236, 253, 263

JSON Web Token (JWT)

authentication, 288

L

Layered system, 235

ListAPIView, 267

ListCreateAPIView, 269

ListView, 122–125

Local deployment, 162, 163

login_user() view, 199

log_out() view, 200

M

make_server() method, 9

Many-to-many relationship,

80–82

map() function, 379, 388, 403

MessageMiddleware, 191

Messages framework

activation, 190, 191

adding, 193

cookies, 188, 189

definition, 188

design considerations, 187

fetching, 194–197

flashed message, 197

login screen, 196

notifications, 187

INDEX

419

sessions, 189, 190

storage backends, 192

Microframeworks, 13

Migration, 62, 64, 66, 156

ModelForm, 108–111, 117

ModelSerializer

@api_view decorator, 252

browsable API, 253, 254, 257

conditional blocks, 256

DELETE button, 257

fields, 250

GET and POST

methods, 252

GET request, 251

HTTPie app, 258, 259

hyperlinks, 259–263

implementations, 249

individual field

attributes, 250

JSON response, 251, 252

Meta class, 250

PUT button, 257, 258

returning 201 response,

254, 255

save() method, 253

tools, 258

URL mapping, 251

urlpatterns, 255

Model-view-controller

(MVC), 14, 15

ModelViewSet, 272, 273

Model-view-template

(MVT), 15, 16

MongoDB, 145, 161

Compass

adding document, 168

approaches, 170

connect Atlas, 170

connection string, 168, 169

GUI tool, 166

local MongoDB server, 167

definition, 162

document-oriented

database, 162

installation

Atlas, 163

local deployment, 162, 163

network access

whitelist, 164

shell, 164–166

MongoDB Query Language

(MQL), 184

MongoEngine, 170

connection, 178, 179, 181

document class, 177, 178

DynamicDocument, 181–183

installation, 176

ORMs, 176

relational databases, 176

mutate() method, 328, 333

Mutation, 305, 306, 313, 321, 328, 333

mydb database, 179

myfunction() function, 131

MySQL database, 61

N

NOSQL databases, 161

INDEX

420

O

OAuth2Authentication, 288

Object-Document Mapper

(ODM), 176

Object-relational mapper

(ORM), 59

admin shell

add objects, 66, 67

parameters, 65

retrieval, 67–69

search, 69, 70

updating objects, 70, 71

admin site, 64, 65

API, 58

CRUD operations, 51

database configuration,

61, 62

DB-API, 52–56

definition, 57

execute() method, 58

field types, 72–75

interface, 58

libraries, 59

model class, 60, 61

run migrations, 62, 64

SQLAlchemy (see

SQLAlchemy ORM)

types of relationships (see

Relationships)

Object types, 303

One-to-many relationship, 79

One-to-one relationship, 77, 78

OPTIONS method, 5

ORM, see Object-relational

mapper (ORM)

P

PATCH method, 5

path() function, 36

POST method, 4

Primary key, 75, 76, 122, 129, 177,

256, 260

Principal model, 78

Promises, 370, 371

Protocol router, 350

ProtocolTypeRouter, 346, 349

PUT method, 5

PyMongo, 170

install dnspython, 171

insert document, 172

libraries, 171

parameters, 171

retrieval, 173–176

startproject command, 171

Python, 24

GraphQL, 308, 309

libraries, 308

web frameworks, 316

webSockets, 338–344

Python Enhancement Proposal

(PEP), 7

Q

Queries, 304, 305, 310, 332

Queryset methods, 218

INDEX

421

R

React JS

advantages, 364

Apollo (see Apollo)

apps, 366–369

axios (see Axios)

components, 365

developer tools, 370

hooks, 365

library, 364

promises, 370, 371

props, 365

useEffect hook, 373, 374

useState hook, 372, 373

virtual DOM, 365

WebSocket, 404–410

react-router-dom library, 386

Redis channel layer, 355

register() method, 273, 274

register_user() view, 202

Regular expressions, 350

Relational databases, 52, 59, 75, 77,

161, 176

RElational State Transfer (REST),

see REST API

Relationships

description, 75

foreign key, 76, 77

many-to-many

relationship, 80–82

one-to-many relationship, 79

one-to-one relationship,

77, 78

primary key, 75, 76

typo errors, 77

Remote Procedure Call

(RPC), 232

render() function, 41, 42

render() method, 89–91

re_path() function, 350

Request-response cycle, 2, 3

Request-response model, 345

REST API

architecture

advantages, 233

cacheability, 234

client-server, 234

code on demand, 235

HTTP standards, 233

layered system, 235

statelessness, 234

URI, 233

DRF (see Django REST

Framework (DRF))

features, 229

vs. GraphQL, 300, 301

serialization, 235–237

RetrieveAPIView, 268

RetrieveDestroyAPIView, 269

RetrieveUpdateAPIView, 269

RetrieveUpdateDestroy

APIView, 269, 270

Reusable apps, 218–223

reverse() function, 242

Routers, 273–275

Routing, 349–351, 353

run() function, 17

Runserver command, 346

INDEX

422

S

Scalar types, 303

Schema, 307, 309

Schema definition language (SDL)

mutations, 305, 306

queries, 304, 305

schema, 307, 309

structure, 302

subscription, 306

types, 302, 303

script.py.mako template, 157

Secret key, 213

Security features

CSRF, 207, 208

SQL injection, 211–213

XSS, 209, 210

Serialization, 229, 235–237

attributes, 245, 246

CRUD operations, 247

data formats, 244

description, 244

features, 244

field types, 248

methods

create(), 249

is_valid(), 248

save(), 249

update(), 249

validate(), 248

rest_framework package, 246

ticket model, 244, 247

serialize() method, 236

serve_forever() method, 9

Server-side frameworks, 12

SessionManager factory, 154

SessionMiddleware, 191, 350

Sessions, 189, 190

set_cookie() method, 188

setCount() function, 372

setData() function, 379

setup() function, 221

Simple Object Access Protocol

(SOAP), 232

SimpleRouter, 274

Single channel layer, 356

sleep() function, 17

SQLAlchemy ORM

components, 146

constituents, 146

database, 146

data mapper pattern, 147

engine, 148, 149

high-level abstraction, 146

installation, 148

model, 151, 153

schematic diagram, 147, 158

session, 153, 154, 156

table, 149, 150

SQL Expression Language

(SQEL), 146

SQL injection, 211–213

SQLite, 52–54, 148

SQLite database, 330

Sqlmigrate command, 81

Start_response, 7

State hooks, 365

Statelessness, 234

INDEX

423

Static files

asset, 129, 130, 132

configurations, 125

CSS file, 127, 131, 133, 134

definition, 125

deployment, 126

directories, 126

href attribute, 127

image example, 131

JavaScript, 131, 133, 134

runserver command, 126

stylesheet, 128

web server, 126

Strawberry, 308, 309

code-first approach, 310

description, 309

fields, 310

GraphQL schema, 310

mutation, 313

package, 311

PIP installer, 309

query, 310, 312

resolver functions, 314, 316

server, 312

type, 310

variables, 314, 315

Strawberry-Django

AsyncGraphQLView, 317

CRUD operations, 317

data-driven GraphQL

API, 316

filtered query, 320, 321

functionality, 317

implementation, 319

installation, 316

models.py code, 318

mutation, 321

output pane, 321, 322

package, 316

query designer, 319

query fetching books, 320

resolver function, 319

@strawberry_django.field

decorator, 318

strawberry.Schema()

constructor, 311

@strawberry.type decorator, 310

Subject model, 80

Subscription, 306

Swagger UI

documentation, 291

GET and POST endpoints, 295

request body, 295, 296

response, 296, 297

testing, 292

TicketSchema, 293

Synchronous consumer, 348

sync_to_async(), 217

SyncToAsync wrapper, 20

T

Tastypie, 288

Teacher model, 80

Templates

class-based views, 111–114

conditional request

handling, 112

INDEX

424

context, 90–92

engine, 86, 87

form (see Form templates)

generic views, 114–125

index view, 88

inheritance, 134–143

limitations, 364

object, 86–89

rendering, 89, 90

settings, 87

static files, 125–134

tags

{% for %}, 96–99

{% if %}, 93–96

symbols, 92

user view with parameter, 88

using loop, 99

view class example, 112

web page, 90

TemplateView, 114–116

TicketList component,

386–388, 390

Ticket model, 292

TokenAuthentication, 277, 281

adding token, 283

administration, 282

authenticated view, 285

client-server setups, 280

function-based view, 281

HTTPie

authenticated response,

286, 287

command terminal, 287, 288

token generation, 286

mechanism, 281

migrations, 280

security risk, 280

string, 282

token key, 284

Tokens model, 282

TRACE method, 5

Transmission control protocol

(TCP), 335

Two-way full-duplex

communication, 337

U

Ubuntu, 24–27

Uniform Resource Identifier

(URI), 233

UpdateAPIView, 268

update_book() function, 322

UpdateView, 118, 119

URLCONF, 30, 37, 38, 240, 273, 278,

317, 332, 352

URL dispatcher, 15

URL mapping, 13

useEffect() hook, 373, 374, 378,

379, 404

useQuery() function, 397

UserCreationForm, 203, 204

user() function, 38

User interfaces (UIs), 364

User management, 13

Templates (cont.)

INDEX

425

useState() hook, 372, 373, 404

Utility apps, 21

V

ViewSets

compound generic

classes, 271

definition, 271

HTTP handler methods, 272

ModelViewSet, 272, 273

URL routes, 274, 275

Virtual DOM, 365

Virtual environments, 24–26, 28

W, X, Y, Z

Web application frameworks,

see Web frameworks

Web frameworks, 11

backend, 12

definition, 11

features, 13

frontend, 12

network-related operations, 13

tasks, 13, 14

types, 12

Web Server Gateway Interface

(WSGI), 7, 8, 11

WebSocket, 19

channels application, 404

chat app

interface, 406, 407

log, 409

login screen, 404, 405

root component, 408

states, 404

connection, 404

handler to receive message, 408

handler to send message, 407

WebsocketConsumer, 348

WebSockets

channel layers, 354–358

channels group chat, 360

client, 344

client template, 358–360

communication, 336

consumers, 348

Django channels, 344–347

index template, 351

login and logout functions,

360, 361

object, 337

protocol, 335–338

and Python

client code, 341

client terminal, 342

connect() method, 341

coroutine-based API, 338

handler, 339

HTML script, 342, 343

library, 339

serve() method, 339

server code, 340

server loop, 339

server terminal, 342

INDEX

426

receiving messages, 338

routing, 349–351, 353

send() method, 338

WebSocketServerProtocol, 339

Windows, 28

World Wide Web (WWW), 2, 6, 188

WSGI-compliant development

server, 345

wsgiref package, 8–11

WebSockets (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Django Basics
	Introduction
	Fundamentals of HTTP
	HTTP Methods
	POST Method
	GET Method
	PUT Method
	DELETE Method

	CGI
	WSGI
	wsgiref Package
	What Is a Web Framework?
	MVC vs. MVT
	Asynchronous Processing
	asyncio Module

	ASGI
	Overview of Django
	Batteries Included
	Utility Apps
	Scalability
	Documentation and Support

	Summary

	Chapter 2: Django: First Steps
	Install Django
	Installation on Ubuntu
	Installation on Windows

	Set Up the Django Project
	Django App
	Add an App
	Define Views
	Define urlpatterns
	Update URLCONF
	Path Parameters
	Serving Web Pages

	Admin Site
	Summary

	Chapter 3: Django ORM
	DB-API
	What Is ORM?
	Define a Model
	Database Configuration
	Run Migrations
	Register Model with Admin Site
	Django Admin Shell
	Add Objects
	Retrieval
	Search
	Updating the Objects

	Model Field Types
	CharField
	IntegerField
	FloatField
	BooleanField
	DateField

	Types of Relationships
	One-to-One Relationship
	One-to-Many Relationship
	Many-to-Many Relationship

	Summary

	Chapter 4: Django Templates
	Template Object
	render() Function
	Template Context
	Template Tags
	{% if %} Tag
	{% for %} Tag

	Form Templates
	HTML Form
	Form Class
	ModelForm

	Class-Based View
	Generic Views
	TemplateView
	CreateView
	UpdateView
	DeleteView
	DetailView
	ListView

	Static Files
	Image As Static Asset
	CSS and JavaScript

	Template Inheritance
	{% include %} Tag
	{% block %} Tag
	{% extends %} Tag

	Summary

	Chapter 5: Django: Using Databases
	SQLAlchemy ORM
	Engine
	Table in SQLAlchemy Core
	Model
	Session

	Alembic
	Advent of NOSQL Databases
	MongoDB
	Installation
	Local Deployment
	Atlas
	MongoDB Shell
	Compass

	PyMongo
	Insert Document
	Retrieval

	MongoEngine
	Document Class
	Connection
	DynamicDocument

	Djongo
	Summary

	Chapter 6: Advanced Django
	Messages Framework
	Cookies
	Sessions
	Activating Messaging
	Storage Backends
	Adding Messages
	Fetching Messages

	Authentication
	Login and Logout
	New User
	@login_required()

	Security Features
	CSRF
	XSS
	SQL Injection

	async Views
	Adapter Functions
	async QuerySets

	Reusable Apps
	Django Debug Toolbar
	Summary

	Chapter 7: REST API with Django
	What Is API?
	REST Architecture
	Uniform Interface
	Statelessness
	Client-Server
	Cacheability
	Layered System
	Code on Demand

	Serialization
	Django REST Framework
	DRF – Get Started
	Serializer Class
	Serializer Fields
	Serializer Methods

	ModelSerializer
	HyperlinkedModelSerializer

	DRF – Class-Based Views
	DRF – Generic Views
	ViewSets
	ModelViewSet

	Routers
	DRF – Authentication
	TokenAuthentication

	Alternatives to DRF
	Django Ninja
	Summary

	Chapter 8: GraphQL with Django
	GraphQL vs. REST
	GraphQL Architecture
	Schema Definition Language
	Types
	Queries
	Mutations
	Subscriptions
	Schema

	GraphQL and Python
	Strawberry
	Strawberry-Django
	Graphene
	Graphene-Django
	Summary

	Chapter 9: WebSockets with Django
	WebSocket Protocol
	WebSocket and Python
	Django Channels
	Consumers
	Routing
	Channel Layers
	Single Channel
	Groups

	WebSocket Client Template
	Login/Logout
	Summary

	Chapter 10: ReactJS with Django
	ReactJS
	React App
	React Developer Tools
	What Is Promise?
	useState Hook
	useEffect Hook
	Axios
	DRF Backend
	Cross-Origin Resource Sharing (CORS)

	Axios Frontend
	TicketList Component
	AddTicket Component

	Apollo
	Graphene-Django Backend
	Apollo Frontend
	BookList Component

	React for WebSocket
	Summary

	Index

